Recall the definitions: The set of RNA strands \(S\) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \texttt{A}\in S, \texttt{C}\in S, \texttt{U}\in S, \texttt{G}\in S \\ \textrm{Recursive Step: } & \textrm{If } s \in S\textrm{ and }b \in B \textrm{, then }sb \in S \end{array}\] where \(sb\) is string concatenation. The function rnalen that computes the length of RNA strands in \(S\) is defined recursively by: \[\begin{array}{llll} & & \textit{rnalen} : S & \to \mathbb{Z}^+ \\ \textrm{Basis Step:} & \textrm{If } b \in B\textrm{ then } & \textit{rnalen}(b) & = 1 \\ \textrm{Recursive Step:} & \textrm{If } s \in S\textrm{ and }b \in B\textrm{, then } & \textit{rnalen}(sb) & = 1 + \textit{rnalen}(s) \end{array}\] The function basecount that computes the number of a given base \(b\) appearing in a RNA strand \(s\) is defined recursively by: \[\begin{array}{llll} & & \textit{basecount} : S \times B & \to \mathbb{N} \\ \textrm{Basis Step:} & \textrm{If } b_1 \in B, b_2 \in B & \textit{basecount}(~(b_1, b_2)~) & = \begin{cases} 1 & \textrm{when } b_1 = b_2 \\ 0 & \textrm{when } b_1 \neq b_2 \\ \end{cases} \\ \textrm{Recursive Step:} & \textrm{If } s \in S, b_1 \in B, b_2 \in B &\textit{basecount}(~(s b_1, b_2)~) & = \begin{cases} 1 + \textit{basecount}(~(s, b_2)~) & \textrm{when } b_1 = b_2 \\ \textit{basecount}(~(s, b_2)~) & \textrm{when } b_1 \neq b_2 \\ \end{cases} \end{array}\]