Defining sets

To define sets:

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid \dots x \dots\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{\dots x \dots \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

 $\{-1, 1\}$ $\{0, 0\}$ $\{-1, 0, 1\}$ $\{(x, x, x) \mid x \in \{-1, 0, 1\}\}$ $\{\}$ $\{x \in \mathbb{Z} \mid x \ge 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{x, C, U, G\}$ $\{AUG, UAG, UGA, UAA\}$

Rna motivation

RNA is made up of strands of four different bases that encode genomic information in specific ways. The bases are elements of the set $B = \{A, C, U, G\}$.

Formally, to define the set of all RNA strands, we need more than roster method or set builder descriptions.

Set recursive examples

Definition The set of nonnegative integers \mathbb{N} is defined (recursively) by:

Basis Step: Recursive Step:

Examples:

Definition The set of all integers \mathbb{Z} is defined (recursively) by:

Basis Step: Recursive Step:

Examples:

Definition The set of RNA strands S is defined (recursively) by:

where sb is string concatenation.

Examples:

Definition The set of bitstrings (strings of 0s and 1s) is defined (recursively) by:

Basis Step: Recursive Step:

Notation: We call the set of bitstrings $\{0, 1\}^*$.

Examples:

Defining sets

To define sets:

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid \dots x \dots\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{\dots x \dots \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

 $\{-1, 1\}$ $\{0, 0\}$ $\{-1, 0, 1\}$ $\{(x, x, x) \mid x \in \{-1, 0, 1\}\}$ $\{\}$ $\{x \in \mathbb{Z} \mid x \ge 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{A, C, U, G\}$ $\{AUG, UAG, UGA, UAA\}$

Rna motivation

RNA is made up of strands of four different bases that encode genomic information in specific ways. The bases are elements of the set $B = \{A, C, U, G\}$.

Formally, to define the set of all RNA strands, we need more than roster method or set builder descriptions.

Set recursive examples

Definition The set of nonnegative integers \mathbb{N} is defined (recursively) by:

Basis Step: Recursive Step:

Examples:

Definition The set of all integers \mathbb{Z} is defined (recursively) by:

Basis Step: Recursive Step:

Examples:

Definition The set of RNA strands S is defined (recursively) by:

where sb is string concatenation.

Examples:

Definition The set of bitstrings (strings of 0s and 1s) is defined (recursively) by:

Basis Step: Recursive Step:

Notation: We call the set of bitstrings $\{0, 1\}^*$.

Examples: