To define sets:
To define a set using roster method, explicitly list its elements. That is, start with \(\{\) then list elements of the set separated by commas and close with \(\}\).
To define a set using set builder definition, either form “The set of all \(x\) from the universe \(U\) such that \(x\) is ..." by writing \[\{x \in U \mid ...x... \}\] or form “the collection of all outputs of some operation when the input ranges over the universe \(U\)" by writing \[\{ ...x... \mid x\in U \}\]
We use the symbol \(\in\) as “is an
element of” to indicate membership in a set.
Example sets: For each of the following,
identify whether it’s defined using the roster method or set builder
notation and give an example element.
\(\{ -1, 1\}\)
\(\{0, 0 \}\)
\(\{-1, 0, 1 \}\)
\(\{(x,x,x) \mid x \in \{-1,0,1\}
\}\)
\(\{ \}\)
\(\{ x \in \mathbb{Z} \mid x \geq 0
\}\)
\(\{ x \in \mathbb{Z} \mid x > 0
\}\)
\(\{\texttt{A},\texttt{C},\texttt{U},\texttt{G}\}\)
\(\{\texttt{A}\texttt{U}\texttt{G},
\texttt{U}\texttt{A}\texttt{G}, \texttt{U}\texttt{G}\texttt{A},
\texttt{U}\texttt{A}\texttt{A}\}\)
RNA is made up of strands of four different bases that encode genomic
information in specific ways.
The bases are elements of the set \(B =
\{\texttt{A}, \texttt{C}, \texttt{U}, \texttt{G}\}\).
Formally, to define the set of all RNA strands, we need more than roster method or set builder descriptions.
Definition The set of nonnegative integers \(\mathbb{N}\) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \phantom{0 \in \mathbb{N}} \\ \textrm{Recursive Step: } & \phantom{\textrm{If } n \in \mathbb{N} \textrm{, then } n+1 \in \mathbb{N}} \end{array}\]
Examples:
Definition The set of all integers \(\mathbb{Z}\) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \phantom{0 \in \mathbb{Z}} \\ \textrm{Recursive Step: } & \phantom{\textrm{If } x \in \mathbb{Z} \textrm{, then } x+1 \in \mathbb{Z} \textrm{ and } x-1 \in \mathbb{Z}} \end{array}\]
Examples:
Definition The set of RNA strands \(S\) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \texttt{A}\in S, \texttt{C}\in S, \texttt{U}\in S, \texttt{G}\in S \\ \textrm{Recursive Step: } & \textrm{If } s \in S\textrm{ and }b \in B \textrm{, then }sb \in S \end{array}\] where \(sb\) is string concatenation.
Examples:
Definition The set of bitstrings (strings of 0s and 1s) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \phantom{\lambda \in X} \\ \textrm{Recursive Step: } & \phantom{\textrm{If } s \in X \textrm{, then } s0 \in X \text{ and } s1 \in X} \end{array}\]
Notation: We call the set of bitstrings \(\{0,1\}^*\).
Examples:
To define sets:
To define a set using roster method, explicitly list its elements. That is, start with \(\{\) then list elements of the set separated by commas and close with \(\}\).
To define a set using set builder definition, either form “The set of all \(x\) from the universe \(U\) such that \(x\) is ..." by writing \[\{x \in U \mid ...x... \}\] or form “the collection of all outputs of some operation when the input ranges over the universe \(U\)" by writing \[\{ ...x... \mid x\in U \}\]
We use the symbol \(\in\) as “is an
element of” to indicate membership in a set.
Example sets: For each of the following,
identify whether it’s defined using the roster method or set builder
notation and give an example element.
\(\{ -1, 1\}\)
\(\{0, 0 \}\)
\(\{-1, 0, 1 \}\)
\(\{(x,x,x) \mid x \in \{-1,0,1\}
\}\)
\(\{ \}\)
\(\{ x \in \mathbb{Z} \mid x \geq 0
\}\)
\(\{ x \in \mathbb{Z} \mid x > 0
\}\)
\(\{\texttt{A},\texttt{C},\texttt{U},\texttt{G}\}\)
\(\{\texttt{A}\texttt{U}\texttt{G},
\texttt{U}\texttt{A}\texttt{G}, \texttt{U}\texttt{G}\texttt{A},
\texttt{U}\texttt{A}\texttt{A}\}\)
RNA is made up of strands of four different bases that encode genomic
information in specific ways.
The bases are elements of the set \(B =
\{\texttt{A}, \texttt{C}, \texttt{U}, \texttt{G}\}\).
Formally, to define the set of all RNA strands, we need more than roster method or set builder descriptions.
Definition The set of nonnegative integers \(\mathbb{N}\) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \phantom{0 \in \mathbb{N}} \\ \textrm{Recursive Step: } & \phantom{\textrm{If } n \in \mathbb{N} \textrm{, then } n+1 \in \mathbb{N}} \end{array}\]
Examples:
Definition The set of all integers \(\mathbb{Z}\) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \phantom{0 \in \mathbb{Z}} \\ \textrm{Recursive Step: } & \phantom{\textrm{If } x \in \mathbb{Z} \textrm{, then } x+1 \in \mathbb{Z} \textrm{ and } x-1 \in \mathbb{Z}} \end{array}\]
Examples:
Definition The set of RNA strands \(S\) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \texttt{A}\in S, \texttt{C}\in S, \texttt{U}\in S, \texttt{G}\in S \\ \textrm{Recursive Step: } & \textrm{If } s \in S\textrm{ and }b \in B \textrm{, then }sb \in S \end{array}\] where \(sb\) is string concatenation.
Examples:
Definition The set of bitstrings (strings of 0s and 1s) is defined (recursively) by: \[\begin{array}{ll} \textrm{Basis Step: } & \phantom{\lambda \in X} \\ \textrm{Recursive Step: } & \phantom{\textrm{If } s \in X \textrm{, then } s0 \in X \text{ and } s1 \in X} \end{array}\]
Notation: We call the set of bitstrings \(\{0,1\}^*\).
Examples: