Ratings encoding

In the table below, each row represents a user's ratings of movies: \checkmark (check) indicates the person liked the movie, \bigstar (x) that they didn't, and \bullet (dot) that they didn't rate it one way or another (neutral rating or didn't watch). Can encode these ratings numerically with 1 for \checkmark (check), -1 for \bigstar (x), and 0 for \bullet (dot).

	Person	Fyre	Frozen II	Picard	Ratings written as a 3-tuple
-	P_1	X	٠	1	
	P_2	1	1	X	
	P_3	1	1	1	
	P_4	•	×	1	

Defining sets

To define sets:

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid \dots x \dots\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{\dots x \dots \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

 $\{-1, 1\}$ $\{0, 0\}$ $\{-1, 0, 1\}$ $\{(x, x, x) \mid x \in \{-1, 0, 1\}\}$ $\{\}$ $\{x \in \mathbb{Z} \mid x \ge 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{A, C, U, G\}$ $\{AUG, UAG, UGA, UAA\}$

Defining functions ratings

Recall our representation of Netflix users' ratings of movies as *n*-tuples, where *n* is the number of movies in the database. Each component of the *n*-tuple is -1 (didn't like the movie), 0 (neutral rating or didn't watch the movie), or 1 (liked the movie).

Consider the ratings $P_1 = (-1, 0, 1), P_2 = (1, 1, -1), P_3 = (1, 1, 1), P_4 = (0, -1, 1)$

Which of P_1 , P_2 , P_3 has movie preferences most similar to P_4 ?

One approach to answer this question: use **functions** to define distance between user preferences.

For example, consider the function d_0 : given by

 $d_0(((x_1, x_2, x_3), (y_1, y_2, y_3)))) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$

Extra example: A new movie is released, and P_1 and P_2 watch it before P_3 , and give it ratings; P_1 gives \checkmark and P_2 gives \checkmark . Should this movie be recommended to P_3 ? Why or why not?

Extra example: Define a new function that could be used to compare the 4-tuples of ratings encoding movie preferences now that there are four movies in the database.

 \rightarrow

Ratings encoding

In the table below, each row represents a user's ratings of movies: \checkmark (check) indicates the person liked the movie, \bigstar (x) that they didn't, and \bullet (dot) that they didn't rate it one way or another (neutral rating or didn't watch). Can encode these ratings numerically with 1 for \checkmark (check), -1 for \bigstar (x), and 0 for \bullet (dot).

$\begin{array}{ c c c c c }\hline P_1 & \bigstar & \bullet & \checkmark \\ P_2 & \checkmark & \checkmark & \checkmark \\ P_3 & \checkmark & \checkmark & \checkmark \\ \hline \end{array}$	Person	Fyre	Frozen II	Picard	Ratings written as a 3-tuple
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_1	X	•	1	
$P_3 \checkmark \checkmark \checkmark \checkmark \blacksquare$	P_2	\checkmark	\checkmark	X	
	P_3	1	1	1	
P_4 \bullet X V	P_4	•	×	1	

Defining sets

To define sets:

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid \dots x \dots\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{\dots x \dots \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

 $\{-1, 1\}$ $\{0, 0\}$ $\{-1, 0, 1\}$ $\{(x, x, x) \mid x \in \{-1, 0, 1\}\}$ $\{\}$ $\{x \in \mathbb{Z} \mid x \ge 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{A, C, U, G\}$ $\{AUG, UAG, UGA, UAA\}$

Defining functions ratings

Recall our representation of Netflix users' ratings of movies as *n*-tuples, where *n* is the number of movies in the database. Each component of the *n*-tuple is -1 (didn't like the movie), 0 (neutral rating or didn't watch the movie), or 1 (liked the movie).

Consider the ratings $P_1 = (-1, 0, 1), P_2 = (1, 1, -1), P_3 = (1, 1, 1), P_4 = (0, -1, 1)$

Which of P_1 , P_2 , P_3 has movie preferences most similar to P_4 ?

One approach to answer this question: use **functions** to define distance between user preferences.

For example, consider the function d_0 : given by

 $d_0(((x_1, x_2, x_3), (y_1, y_2, y_3)))) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$

Extra example: A new movie is released, and P_1 and P_2 watch it before P_3 , and give it ratings; P_1 gives \checkmark and P_2 gives \checkmark . Should this movie be recommended to P_3 ? Why or why not?

Extra example: Define a new function that could be used to compare the 4-tuples of ratings encoding movie preferences now that there are four movies in the database.

 \rightarrow