
HW6 Proofs, Numbers, and Cardinality

CSE20F21

Due: Tuesday, November 23, 2021 at 11:00PM on Gradescope

In this assignment,

You will practice determining and justifying whether statements are true in multiple contexts.

Instructions and academic integrity reminders for all homework assignments in CSE20 this quar-
ter are on the class website and on the hw1-definitions-and-notations assignment.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw6-proofs-numbers-cardinality”.

Resources: To review the topics you are working with for this assignment, see the class material
from Weeks 6 through 8. We will post frequently asked questions and our answers to them in a
pinned Piazza post.

In your proofs and disproofs of statements below, justify each step by reference to a component
of the following proof strategies we have discussed so far, and/or to relevant definitions and
calculations.

• A counterexample can be used to prove that ∀xP (x) is false.

• A witness can be used to prove that ∃xP (x) is true.

• Proof of universal by exhaustion: To prove that ∀xP (x) is true when P has a finite
domain, evaluate the predicate at each domain element to confirm that it is always T.

• Proof by universal generalization: To prove that ∀xP (x) is true, we can take an
arbitrary element e from the domain and show that P (e) is true, without making any
assumptions about e other than that it comes from the domain.

• To prove that ∃xP (x) is false, write the universal statement that is logically equivalent to
its negation and then prove it true using universal generalization.
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• Strategies for conjunction: To prove that p ∧ q is true, have two subgoals: subgoal (1)
prove p is true; and, subgoal (2) prove q is true. To prove that p∧ q is false, it’s enough to
prove that p is false. To prove that p ∧ q is false, it’s enough to prove that q is false.

• Proof of Conditional by Direct Proof: To prove that the implication p → q is true,
we can assume p is true and use that assumption to show q is true.

• Proof of Conditional by Contrapositive Proof: To prove that the implication p → q
is true, we can assume ¬q is true and use that assumption to show ¬p is true.

• Proof of disjuction using equivalent conditional: To prove that the disjunction p∨ q
is true, we can rewrite it equivalently as ¬p → q and then use direct proof or contrapositive
proof.

• Proof by Cases: To prove q when we know p1 ∨ p2, show that p1 → q and p2 → q.

• Proof by Structural Induction: To prove that ∀x ∈ X P (x) where X is a recursively
defined set, prove two cases:

Basis Step: Show the statement holds for elements specified in the basis step of the
definition.

Recursive Step: Show that if the statement is true for each of the elements used to construct
new elements in the recursive step of the definition, the result holds for these
new elements.

• Proof by Mathematical Induction: To prove a universal quantification over the set of
all integers greater than or equal to some base integer b:

Basis Step: Show the statement holds for b.
Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the

induction hypothesis) that the property holds for n, and use this and
other facts to prove that the property holds for n+ 1.

• Proof by Strong Induction To prove that a universal quantification over the set of all
integers greater than or equal to some base integer b holds, pick a fixed nonnegative integer
j and then:

Basis Step: Show the statement holds for b, b+ 1, . . . , b+ j.
Recursive Step: Consider an arbitrary integer n greater than or equal to b + j, assume (as

the strong induction hypothesis) that the property holds for each of b,
b + 1, . . . , n, and use this and other facts to prove that the property holds
for n+ 1.

• Proof by Contradiction

To prove that a statement p is true, pick another statement r and once we show that
¬p → (r ∧ ¬r) then we can conclude that p is true.

Informally The statement we care about can’t possibly be false, so it must be true.
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Assigned questions

1. Recall the definition of the set of linked lists from class, and some associated functions.

Basis Step: [] ∈ L
Recursive Step: If l ∈ L and n ∈ N, then (n, l) ∈ L

The length function length : L → N is defined by

Basis Step: length( [] ) = 0
Recursive Step: If l ∈ L and n ∈ N, then length( (n, l) ) = 1 + length(l)

The function prepend : L× N → L is defined by

prepend( (l, n) ) = (n, l)

The function append : L× N → L is defined by

Basis Step: If m ∈ N then append( ([],m) ) = (m, [])
Recursive Step: If l ∈ L and n ∈ N and m ∈ N, then append( ( (n, l),m ) ) = (n, append( (l,m) ) )

(a) (Graded for fair effort completeness1) Fill in the blanks in the following proof of the
statement

∀l ∈ L ∀m ∈ N ( length(prepend( (l,m) )) = length(append( (l,m) )) )

Proof: We proceed by structural induction on L.

Basis step: We need to show that

∀m ∈ N ( length(prepend( ([],m) )) = length(append( ([],m) )) )

Towards universal generalization, let m be an arbitrary natural number. Calculating:

LHS = BLANK 1

RHS = BLANK 2

Since LHS = RHS, the basis step is complete.

Recursive step: Consider an arbitrary: l′ ∈ L, n ∈ N, and we assume as the
induction hypothesis that:

BLANK 3

Our goal is to show that

∀m ∈ N ( length(prepend( ( (n, l′) ,m) )) = length(append( ( (n, l′),m) )) )

is also true. Let m be an arbitrary natural number. Calculating:

LHS = BLANK 4

RHS = BLANK 5

Since LHS = RHS, the recursive step is complete.

1Graded for fair effort completeness means you will get full credit so long as your submission demonstrates
honest effort to answer the question. You will not be penalized for incorrect answers.
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(b) (Graded for correctness2) Disprove the statement

∀l ∈ L ∀m ∈ N ( prepend( (l,m) ) = append( (l,m) ) )

(c) (Graded for correctness) Determine whether the statement

∃l ∈ L ∃m ∈ N ( prepend( (l,m) ) = append( (l,m) ) )

is true or false, and justify your conclusion using valid proof strategies.

2. Recall the definition of the set of rational numbers,

Q =

{
p

q
| p ∈ Z and q ∈ Z and q ̸= 0

}
We define the set of irrational numbers Q = R−Q = {x ∈ R | x /∈ Q}.

(a) (Translation graded for fair effort completeness; Witness graded for correctness) Trans-
late the statement to English and then give a witness that could be used to prove the
statement

∃x ∈ Q ∀y ∈ Q (x · y ∈ Q)

You do not need to justify your answer. However, if you include clear explanations,
we may be able to give partial credit for an answer with some imprecision.

(b) (Translation graded for fair effort completeness; Counterexample graded for correct-
ness) Translate the statement to English and then give a counterexample that could
be used to disprove the statement

∀x ∈ Q (x > 0 → x ≥ 1)

You do not need to justify your answer. However, if you include clear explanations,
we may be able to give partial credit for an answer with some imprecision.

(c) (Translation graded for fair effort completeness; Witness graded for correctness) Trans-
late the statement to English and then give a witness that could be used to prove the
statement

∃(x, y, z) ∈ Q×Q×Q (y ̸= z ∧ xy = z)

You do not need to justify your answer. However, if you include clear explanations,
we may be able to give partial credit for an answer with some imprecision.

(d) (Graded for fair effort completeness3) Fill in the blanks in the following argument.

Claimed statement: ∃x ∈ Q ∃y ∈ Q ∃z ∈ Q (xy = z).

2Graded for correctness means your solution will be evaluated not only on the correctness of your answers,
but on your ability to present your ideas clearly and logically. You should explain how you arrived at your
conclusions, using mathematically sound reasoning. Whether you use formal proof techniques or write a more
informal argument for why something is true, your answers should always be well-supported. Your goal should
be to convince the reader that your results and methods are sound.

3Fair effort completeness for this question means either attempting to correctly answer each part or to write
a sentence or two on where you get stuck in your attempt to correctly answer the question.

Copyright Mia Minnes, 2021, Version August 29, 2024 (4)



Proof: We need to give a witness to prove this existential claim. We proceed
in a proof by cases, since the disjunction (i) is true.

• Case 1: We need to show that

(
√
2
√
2
∈ Q) → ∃x ∈ Q ∃y ∈ Q ∃z ∈ Q (xy = z)

Assume towards a direct proof that (ii) . We choose

the witnesses x =
√
2, y =

√
2, z =

√
2
√
2
. By the theorem we proved in

class,
√
2 /∈ Q. Since x = y =

√
2, x ∈ Q and y ∈ Q. By the assumption

of this direct proof, z ∈ Q. Thus, the witnesses we picked are in the
required domains. Moreover, by definition, z = xy, as required. Thus,
the existential claim is proved and we have completed the direct proof
required for this case.

• Case 2: We need to show that

(
√
2
√
2
∈ Q) → ∃x ∈ Q ∃y ∈ Q ∃z ∈ Q (xy = z)

Assume towards a direct proof that (
√
2
√
2 ∈ Q). We choose the witnesses

x = (iii) , y = (iv) , z = (v)

By the assumption of this direct proof, x ∈ Q. As we mentioned above,√
2 /∈ Q so y ∈ Q. Picking p = 2, q = 1, we observe that z = 2

1
and since

(vi) , z ∈ Q. Thus, the three witnesses we picked are
in the required domains. Calculating:(√

2
√
2
)√

2

=
(√

2
)√

2·
√
2

=
(√

2
)2

=
√
2 ·

√
2 = 2

which proves that (vii) , and hence x, y, z are the re-
quired witnesses. Thus, the existential claim is proved and we have com-
pleted the direct proof required for this case.

The proof by cases is now complete and the statement has been proved. QED

3. Recall that A hex color is a nonnegative integer, n, that has a base 16 fixed-width 6
expansion

n = (r1r2g1g2b1b2)16,6

where (r1r2)16,2 is the red component, (g1g2)16,2 is the green component, and (b1b2)16,2 is the
blue component. For notational convenience, we define the set C = {x ∈ N | x < 166}.
This is the set of possible hex colors because these are all numbers that have hexadecimal
fixed-width 6 expansions.

(a) (Graded for correctness) Determine and briefly justify whether C is finite, countably
infinite, or uncountable.
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(b) Consider the function red : C → C given by red( (r1r2g1g2b1b2)16,6 ) = (r1r20000)16,6.

i. (Graded for correctness) Determine whether red is one-to-one, and justify your
conclusion using valid proof strategies.

ii. (Graded for correctness) Determine whether red is onto, and justify your conclu-
sion using valid proof strategies.

4. Consider the set of ratings in a 3-movie database R = {−1, 0, 1} × {−1, 0, 1} × {−1, 0, 1}
and the set of bases of RNA strands B = {A, C, U, G}.

(a) (Graded for fair effort completeness) Give a (well-defined) one-to-one function with
domain R and codomain B or explain why there is no such function.

(b) (Graded for fair effort completeness) Give a (well-defined) one-to-one function with
domain B and codomain R or explain why there is no such function.

(c) (Graded for fair effort completeness) Give a (well-defined) onto function with domain
R and codomain B or explain why there is no such function.

(d) (Graded for fair effort completeness) Give a (well-defined) onto function with domain
B and codomain R or explain why there is no such function.

Sample calculation that can be used as reference for the detail expected in your answer when
specifying functions and reasoning about their properties:

We give a (well-defined) function with domain R and codomain B that is neither one-to-one
nor onto.

Define g : R → B by, for (x1, x2, x3) ∈ R,

g( (x1, x2, x3) ) =


A if x1 = 1

C if x1 = 0

G if x1 = −1

This function is well-defined because each ratings 3-tuples is mapped to a unique base.
However, this function is not one-to-one, as we can see from the counterexample: a =
(1, 1, 1), b = (1, 0, 0). These are ratings 3-tuples (in the domain) which are distinct (they
disagree about the second and third movies) but

g(a) = g( (1, 1, 1) ) = A = g( (1, 0, 0) ) = g(b)

because the two ratings agree on the first movie. Distinct domain elements getting mapped
to the same codomain elements is a counterexample to injectivity.

The function g is also not onto, as we can see from the counterexample U. This is an
element of the codomain which is not f(x) for any x in the domain, as we can see
from the piecewise definition of g, where in no case do we have the output value U.
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