
Week4

Monday October 18

Real-life representations are often prone to corruption. Biological codes, like RNA, may mutate naturally1

and during measurement; cosmic radiation and other ambient noise can flip bits in computer storage2. One
way to recover from corrupted data is to introduce or exploit redundancy.

Consider the following algorithm to introduce redundancy in a string of 0s and 1s.

Create redundancy by repeating each bit three times
1 procedure redun3(ak−1 · · · a0 : a nonempty b i t s t r i n g)
2 for i := 0 to k − 1
3 c3i := ai
4 c3i+1 := ai
5 c3i+2 := ai
6 return c3k−1 · · · c0

Decode sequence of bits using majority rule on consecutive three bit sequences
1 procedure decode3(c3k−1 · · · c0 : a nonempty b i t s t r i n g whose l ength i s an i n t e g e r mu l t ip l e o f 3)
2 for i := 0 to k − 1
3 i f exac t l y two or three o f c3i, c3i+1, c3i+2 are s e t to 1
4 ai := 1
5 else
6 ai := 0
7 return ak−1 · · · a0

Give a recursive definition of the set of outputs of the redun3 procedure, Out,

Consider the message m = 0001 so that the sender calculates redun3(m) = redun3(0001) = 000000000111.

Introduce errors into the message so that the signal received by the receiver is but the
receiver is still able to decode the original message.

Challenge: what is the biggest number of errors you can introduce?

Building a circuit for lines 3-6 in decode procedure: given three input bits, we need to determine whether
the majority is a 0 or a 1.

c3i c3i+1 c3i+2 ai
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Circuit

1Mutations of specific RNA codons have been linked to many disorders and cancers.
2This RadioLab podcast episode goes into more detail on bit flips: https://www.wnycstudios.org/story/bit-flip

CC BY-NC-SA 2.0 Version August 29, 2024 (1)

https://www.wnycstudios.org/story/bit-flip
https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: The Cartesian product of the sets A and B, A × B, is the set of all ordered pairs (a, b),
where a ∈ A and b ∈ B. That is: A × B = {(a, b) | (a ∈ A) ∧ (b ∈ B)}. The Cartesian product of the
sets A1, A2, . . . , An, denoted by A1 × A2 × · · · × An, is the set of ordered n-tuples (a1, a2, ..., an), where ai
belongs to Ai for i = 1, 2, . . . , n. That is,

A1 × A2 × · · · × An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n}

Recall that S is defined as the set of all RNA strands, nonempty strings made of the bases in B = {A, U, G, C}.
We define the functions

mutation : S × Z+ ×B → S insertion : S × Z+ ×B → S

deletion : {s ∈ S | rnalen(s) > 1} × Z+ → S with rules

1 procedure mutation(b1 · · · bn : a RNA strand , k : a positive integer , b : an element of B)
2 for i := 1 to n
3 i f i = k
4 ci := b
5 else
6 ci := bi
7 return c1 · · · cn {The return value is a RNA strand made of the ci values}

1 procedure insertion(b1 · · · bn : a RNA strand , k : a positive integer , b : an element of B)
2 i f k > n
3 for i := 1 to n
4 ci := bi
5 cn+1 := b
6 else
7 for i := 1 to k − 1
8 ci := bi
9 ck := b

10 for i := k + 1 to n+ 1
11 ci := bi−1

12 return c1 · · · cn+1 {The return value is a RNA strand made of the ci values}

1 procedure deletion(b1 · · · bn : a RNA strand with n > 1 , k : a positive integer)
2 i f k > n
3 m := n
4 for i := 1 to n
5 ci := bi
6 else
7 m := n− 1
8 for i := 1 to k − 1
9 ci := bi

10 for i := k to n− 1
11 ci := bi+1

12 return c1 · · · cm {The return value is a RNA strand made of the ci values}

Trace the pseudocode to find the output of mutation((AUC, 3, G))

Fill in the blanks so that insertion((AUC, ,)) = AUCG

Fill in the blanks so that deletion((,)) = G

CC BY-NC-SA 2.0 Version August 29, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

In this question, we will consider how to build a logic circuit with inputs x0, y0, x1, y1 and output z
such that z = 1 exactly when (x1x0)2,2 < (y1y0)2,2 and z = 0 exactly when (x1x0)2,2 ≥ (y1y0)2,2.

(a) The first step towards designing this logic circuit is to construct its input-output table. How
many rows does this table have (not including the header row labelling the columns)?

(b) What is the output for the row whose input values are x0 = 0, y0 = 1, x1 = 1, y1 = 0?

(c) What is the output for the row whose input values are x0 = 0, y0 = 1, x1 = 0, y1 = 1?

2.

Recall the procedures redun3 and decode3 from class.

(a) Give the output of redun3(100).

(b) If the output of running redun3 is 000000111000111, what was its input?

(c) Give the output of decode3(100).

(d) How many distinct possible inputs to decode3 give the output 01?

3.

Recall the procedures mutation and insertion and deletion from class.

(a) Trace the pseudocode to find the output of mutation((AUC, 2, U))

(b) Trace the pseudocode to find the output of insertion((AUC, 1, G))

(c) Trace the pseudocode to find the output of deletion((AUC, 1))

CC BY-NC-SA 2.0 Version August 29, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday October 20

Definition: A predicate is a function from a given set (domain) to {T, F}.

A predicate can be applied, or evaluated at, an element of the domain.

Usually, a predicate describes a property that domain elements may or may not have.

Two predicates over the same domain are equivalent means they evaluate to the same truth values for all
possible assignments of domain elements to the input. In other words, they are equivalent means that they
are equal as functions.

To define a predicate, we must specify its domain and its value at each domain element. The rule assigning
truth values to domain elements can be specified using a formula, English description, in a table (if the
domain is finite), or recursively (if the domain is recursively defined).

Input Output
V (x) N(x) Mystery(x)

x [x]2c,3 > 0 [x]2c,3 < 0
000 F T
001 T T
010 T T
011 T F
100 F F
101 F T
110 F F
111 F T

The domain for each of the predicates V (x), N(x),Mystery(x) is .

Fill in the table of values for the predicate N(x) based on the formula given.

Definition: The truth set of a predicate is the collection of all elements in its domain where the predicate
evaluates to T .

Notice that specifying the domain and the truth set is sufficient for defining a predicate.

The truth set for the predicate V (x) is .

The truth set for the predicate N(x) is .

The truth set for the predicate Mystery(x) is .

CC BY-NC-SA 2.0 Version August 29, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The universal quantification of predicate P (x) over domain U is the statement “P (x) for all values of x in
the domain U” and is written ∀xP (x) or ∀x ∈ U P (x). When the domain is finite, universal quantification
over the domain is equivalent to iterated conjunction (ands).

The existential quantification of predicate P (x) over domain U is the statement “There exists an element
x in the domain U such that P (x)” and is written ∃xP (x) for ∃x ∈ U P (x). When the domain is finite,
existential quantification over the domain is equivalent to iterated disjunction (ors).

An element for which P (x) = F is called a counterexample of ∀xP (x).

An element for which P (x) = T is called a witness of ∃xP (x).

Statements involving predicates and quantifiers are logically equivalent means they have the same truth
value no matter which predicates (domains and functions) are substituted in.

Quantifier version of De Morgan’s laws: ¬∀xP (x) ≡ ∃x (¬P (x)) ¬∃xQ(x) ≡ ∀x (¬Q(x))

Examples of quantifications using V (x), N(x),Mystery(x):

True or False: ∃x (V (x) ∧N(x))

True or False: ∀x (V (x) → N(x))

True or False: ∃x (N(x) ↔ Mystery(x))

Rewrite ¬∀x (V (x)⊕Mystery(x)) into a logical equivalent statement.

Notice that these are examples where the predicates have finite domain. How would we evaluate quantifi-
cations where the domain may be infinite?

Example predicates on S, the set of RNA strands (an infinite set)

H : S → {T, F} where H(s) = T for all s.

Truth set of H is

FA : S → {T, F} defined recursively by:

Basis step: FA(A) = T , FA(C) = FA(G) = FA(U) = F

Recursive step: If s ∈ S and b ∈ B, then FA(sb) = FA(s).

Example where FA evaluates to T is

Example where FA evaluates to F is

CC BY-NC-SA 2.0 Version August 29, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall the predicates V (x), N(x), and Mystery(x) on domain {000, 001, 010, 011, 100, 101, 110, 111}
from class. Which of the following is true? (Select all and only that apply.)

(a) (∀x V (x)) ∨ (∀x N(x))

(b) (∃x V (x)) ∧ (∃x N(x)) ∧ (∃x Mystery(x))

(c) ∃x (V (x) ∧N(x) ∧Mystery(x))

(d) ∀x (V (x)⊕N(x))

(e) ∀x (Mystery(x) → V (x))

2.

Consider the following predicates, each of which has as its domain the set of all bitstrings whose
leftmost bit is 1

E(x) is T exactly when (x)2 is even, and is F otherwise

L(x) is T exactly when (x)2 < 3, and is F otherwise

M(x) is T exactly when (x)2 > 256 and is F otherwise.

(a) What is E(110)?

(b) Why is L(00) undefined?

i. Because the domain of L is infinite

ii. Because 00 does not have 1 in the leftmost position

iii. Because 00 has length 2, not length 3

iv. Because (00)2,2 = 0 which is less than 3

(c) Is there a bitstring of width (where width is the number of bits) 6 at which M(x) evaluates to
T?

3.

For this question, we will use the following predicate.

FA with domain S is defined recursively by:

Basis step: FA(A) = T , FA(C) = FA(G) = FA(U) = F

Recursive step: If s ∈ S and b ∈ B, then FA(sb) = FA(s)

Which of the following is true? (Select all and only that apply.)

(a) FA(AA)

(b) FA(AC)

(c) FA(AG)

(d) FA(AU)

CC BY-NC-SA 2.0 Version August 29, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

(e) FA(CA)

(f) FA(CC)

(g) FA(CG)

(h) FA(CU)

CC BY-NC-SA 2.0 Version August 29, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday October 22

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen : S → Z+

Basis Step: If b ∈ B then rnalen(b) = 1
Recursive Step: If s ∈ S and b ∈ B, then rnalen(sb) = 1 + rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S ×B → N

Basis Step: If b1 ∈ B, b2 ∈ B basecount((b1, b2)) =

{
1 when b1 = b2

0 when b1 ̸= b2

Recursive Step: If s ∈ S, b1 ∈ B, b2 ∈ B basecount((sb1, b2)) =

{
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 ̸= b2

Using functions to define predicates:

L with domain S × Z+ is defined by, for s ∈ S and n ∈ Z+,

L((s, n)) =

{
T if rnalen(s) = n

F otherwise

In other words, L((s, n)) means rnalen(s) = n

BC with domain S ×B × N is defined by, for s ∈ S and b ∈ B and n ∈ N,

BC((s, b, n)) =

{
T if basecount((s, b)) = n

F otherwise

In other words, BC((s, b, n)) means basecount((s, b)) = n

Example where L evaluates to T : Why?

Example where BC evaluates to T : Why?

Example where L evaluates to F : Why?

Example where BC evaluates to F : Why?

CC BY-NC-SA 2.0 Version August 29, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

∃t BC(t) ∃(s, b, n) ∈ S ×B × N (basecount((s, b)) = n)

In English:

Witness that proves this existential quantification is true:

∀t BC(t) ∀(s, b, n) ∈ S ×B × N (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

New predicates from old

1. Define the new predicate with domain S ×B and rule

basecount((s, b)) = 3

Example domain element where predicate is T :

2. Define the new predicate with domain S × N and rule

basecount((s, A)) = n

Example domain element where predicate is T :

3. Define the new predicate with domain S ×B and rule

∃n ∈ N (basecount((s, b)) = n)

Example domain element where predicate is T :

4. Define the new predicate with domain S and rule

∀b ∈ B (basecount((s, b)) = 1)

Example domain element where predicate is T :

Notation: for a predicate P with domain X1 × · · · ×Xn and a n-tuple (x1, . . . , xn) with each xi ∈ X, we
can write P (x1, . . . , xn) to mean P ((x1, . . . , xn)).

CC BY-NC-SA 2.0 Version August 29, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Nested quantifiers

∀s ∈ S ∀b ∈ B ∀n ∈ N (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

∀n ∈ N ∀s ∈ S ∀b ∈ B (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

Alternating nested quantifiers

∀s ∈ S ∃b ∈ B (basecount((s, b)) = 3)

In English: For each RNA strand there is a base that occurs 3 times in this strand.

Write the negation and use De Morgan’s law to find a logically equivalent version where the negation is
applied only to the BC predicate (not next to a quantifier).

Is the original statement True or False?

∃s ∈ S ∀b ∈ B ∃n ∈ N (basecount((s, b)) = n)

In English: There is an RNA strand so that for each base there is some nonnegative integer that counts
the number of occurrences of that base in this strand.

Write the negation and use De Morgan’s law to find a logically equivalent version where the negation is
applied only to the BC predicate (not next to a quantifier).

Is the original statement True or False?

CC BY-NC-SA 2.0 Version August 29, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall the predicate L with domain S × Z+ from class, L((s, n)) means rnalen(s) = n. Which of
the following is true? (Select all and only that apply.)

(a) ∃s ∈ S ∃n ∈ Z+ L((s, n))

(b) ∃s ∈ S ∀n ∈ Z+ L((s, n))

(c) ∀n ∈ Z+ ∃s ∈ S L((s, n))

(d) ∀s ∈ S ∃n ∈ Z+ L((s, n))

(e) ∃n ∈ Z+ ∀s ∈ S L((s, n))

2.

Recall the predicate BC with domain S×B×N from class, BC((s, b, n)) means basecount((s, b)) =
n. Match each sentence to its English translation, or select none of the above.

(a) ∀s ∈ S ∃n ∈ N ∀b ∈ B basecount((s, b)) = n

(b) ∀s ∈ S ∀b ∈ B ∃n ∈ N basecount((s, b)) = n

(c) ∀s ∈ S ∀n ∈ N ∃b ∈ B basecount((s, b)) = n

(d) ∀b ∈ B ∀n ∈ N ∃s ∈ S basecount((s, b)) = n

(e) ∀n ∈ N ∀b ∈ B ∃s ∈ S basecount((s, b)) = n

i. For each RNA strand and each possible base, the number of that base in that strand is a
nonnegative integer.

ii. For each RNA strand and each nonnegative integer, there is a base that occurs this many times
in this strand.

iii. Every RNA strand has the same number of each base, and that number is a nonnegative integer.

iv. For every given nonnegative integer, there is a strand where each possible base appears the given
number of times.

v. For every given base and nonnegative integer, there is an RNA strand that has this base occurring
this many times.

Challenge: Express symbolically

There are (at least) two different RNA strands that have the same number of As.

CC BY-NC-SA 2.0 Version August 29, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

