
Week6

Monday November 1

Today’s session is on Zoom, log in with your @ucsd.edu account https://ucsd.zoom.us/j/97431852722 Meet-
ing ID: 974 3185 2722

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen : S → Z+

Basis Step: If b ∈ B then rnalen(b) = 1
Recursive Step: If s ∈ S and b ∈ B, then rnalen(sb) = 1 + rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S ×B → N

Basis Step: If b1 ∈ B, b2 ∈ B basecount( (b1, b2) ) =

{
1 when b1 = b2

0 when b1 ̸= b2

Recursive Step: If s ∈ S, b1 ∈ B, b2 ∈ B basecount( (sb1, b2) ) =

{
1 + basecount( (s, b2) ) when b1 = b2

basecount( (s, b2) ) when b1 ̸= b2

At this point, we’ve seen the proof strategies

• A counterexample to prove that ∀xP (x) is
false.

• A witness to prove that ∃xP (x) is true.

• Proof of universal by exhaustion to prove
that ∀xP (x) is true when P has a finite domain

• Proof by universal generalization to prove
that ∀xP (x) is true using an arbitrary element
of the domain.

• To prove that ∃xP (x) is false, write the univer-
sal statement that is logically equivalent to its
negation and then prove it true using universal
generalization.

• To prove that p ∧ q is true, have two subgoals:
subgoal (1) prove p is true; and, subgoal (2)
prove q is true. To prove that p∧ q is false, it’s
enough to prove that p is false. To prove that
p∧q is false, it’s enough to prove that q is false.

• Proof of conditional by direct proof

• Proof of conditional by contrapositive proof

• Proof of disjuction using equivalent condi-
tional: To prove that the disjunction p ∨ q is
true, we can rewrite it equivalently as ¬p → q
and then use direct proof or contrapositive
proof.

• Proof by cases.
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Which proof strategies could be used to prove each of the following statements?

Hint: first translate the statements to English and identify the main logical structure.

∀s ∈ S ( rnalen(s) > 0 )

∀b ∈ B ∃s ∈ S ( basecount( (s, b) ) > 0 )

∀s ∈ S ∃b ∈ B ( basecount( (s, b) ) > 0 )

∃s ∈ S (rnalen(s) = basecount( (s, A) )

∀s ∈ S (rnalen(s) ≥ basecount( (s, A) ))
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Claim ∀s ∈ S ( rnalen(s) > 0 )

Proof: Let s be an arbitrary RNA strand. By the recursive definition of S, either s ∈ B or there is some
strand s0 and some base b such that s = s0b. We will show that the inequality holds for both cases.

Case: Assume s ∈ B. We need to show rnalen(s) > 0. By the basis step in the definition of rnalen,

rnalen(s) = 1

which is greater than 0, as required.

Case: Assume there is some strand s0 and some base b such that s = s0b. We will show (the
stronger claim) that

∀u ∈ S ∀b ∈ B ( rnalen(u) > 0 → rnalen(ub) > 0 )

Consider an arbitrary RNA strand u and an arbitrary base b, and assume towards a direct proof,
that

rnalen(u) > 0

We need to show that rnalen(ub) > 0.

rnalen(ub) = 1 + rnalen(u) > 1 + 0 = 1 > 0

as required.

Proof by Structural Induction To prove a universal quantification over a recursively defined set:

Basis Step: Show the statement holds for elements specified in the basis step of the definition.

Recursive Step: Show that if the statement is true for each of the elements used to construct new
elements in the recursive step of the definition, the result holds for these new elements.
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Claim ∀s ∈ S (rnalen(s) ≥ basecount( (s, A) )):

Proof: We proceed by structural induction on the recursively defined set S.

Basis Case: We need to prove that the inequality holds for each element in the basis step of the recursive
definition of S. Need to show

( rnalen(A) ≥ basecount( (A, A) ) ) ∧ ( rnalen(C) ≥ basecount( (C, A) ) )

∧( rnalen(U) ≥ basecount( (U, A) ) ) ∧ ( rnalen(G) ≥ basecount( (G, A) ) )

We calculate, using the definitions of rnalen and basecount:

Recursive Case: We will prove that

∀u ∈ S ∀b ∈ B ( rnalen(u) ≥ basecount( (u, A) ) → rnalen(ub) ≥ basecount( (ub, A) )

Consider arbitrary RNA strand u and arbitrary base b. Assume, as the induction hypothesis, that
rnalen(u) ≥ basecount( (u, A) ). We need to show that rnalen(ub) ≥ basecount( (ub, A) ).

Using the recursive step in the definition of the function rnalen:

rnalen(ub) = 1 + rnalen(u)

The recursive step in the definition of the function basecount has two cases. We notice that b = A ∨ b ̸= A

and we proceed by cases.

Case i. Assume b = A.

Using the first case in the recursive step in the definition of the function basecount:

basecount( (ub, A) ) = 1 + basecount( (u, A) )

By the induction hypothesis, we know that basecount( (u, A) ) ≤ rnalen(u) so:

basecount( (ub, A) ) = 1 + basecount( (u, A) ) ≤ 1 + rnalen(u) = rnalen(ub)

and, thus, basecount( (ub, A) ) ≤ rnalen(ub), as required.

Case ii. Assume b ̸= A.

Using the second case in the recursive step in the definition of the function basecount:

basecount( (ub, A) ) = basecount( (u, A) )

By the induction hypothesis, we know that basecount( (u, A) ) ≤ rnalen(u) so:

basecount( (ub, A) ) = basecount( (u, A) ) ≤ rnalen(u) < 1 + rnalen(u) = rnalen(ub)

and, thus, basecount( (ub, A) ) ≤ rnalen(ub), as required.
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Review

Recall the definitions of the functions rnalen and basecount from class.

1. Select all and only options that give a witness for the existential quantification

∃s ∈ S ( rnalen(s) = basecount( (s, U) ) )

(a) A

(b) UU

(c) CU

(d) (U, 1)

(e) None of the above.

2. Select all and only options that give a counterexample for the universal quantification

∀s ∈ S ( rnalen(s) > basecount( (s, G) ) )

(a) U

(b) GG

(c) AG

(d) CUG

(e) None of the above.

3. Select all and only the true statements

(a) ∀s ∈ S ∃b ∈ B ( rnalen(s) = basecount( (s, b) ) )

(b) ∃s ∈ S ∀b ∈ B ( rnalen(s) = basecount( (s, b) ) )

(c)

∀s1 ∈ S ∀s2 ∈ S ∀b ∈ B
( (

rnalen(s1) = basecount( (s1, b) )

∧ rnalen(s2) = basecount( (s2, b) ) ∧ rnalen(s1) = rnalen(s2)
)
→ s1 = s2

)
(d) None of the above.
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Wednesday November 3

To organize our proofs, it’s useful to highlight which claims are most important for our overall goals. We
use some terminology to describe different roles statements can have.

Theorem: Statement that can be shown to be true, usually an important one.

Less important theorems can be called proposition, fact, result, claim.

Lemma: A less important theorem that is useful in proving a theorem.

Corollary: A theorem that can be proved directly after another one has been proved, without needing a
lot of extra work.

Invariant: A theorem that describes a property that is true about an algorithm or system no matter what
inputs are used.

Theorem: A robot on an infinite 2-dimensional integer grid starts at (0, 0) and at each step moves to
diagonally adjacent grid point. This robot can / cannot (circle one) reach (1, 0).

Definition The set of positions the robot can visit P is defined by:

Basis Step: (0, 0) ∈ P
Recursive Step: If (x, y) ∈ P , then are also in P

Example elements of P are:

Lemma: ∀(x, y) ∈ P (x+ y is an even integer )

Why are we calling this a lemma?

Proof of theorem using lemma: To show is (1, 0) /∈ P . Rewriting the lemma to explicitly restrict the domain
of the universal, we have ∀(x, y) ( (x, y) ∈ P → (x + y is an even integer) ). Since the universal is true,
( (1, 0) ∈ P → (1+0 is an even integer) ) is a true statement. Evaluating the conclusion of this conditional
statement: By definition of long division, since 1 = 0 · 2 + 1 (where 0 ∈ Z and 1 ∈ Z and 0 ≤ 1 < 2 mean
that 0 is the quotient and 1 is the remainder), 1 mod 2 = 1 which is not 0 so the conclusion is false. A
true conditional with a false conclusion must have a false hypothesis. Thus, (1, 0) /∈ P , QED. □
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Proof of lemma by structural induction:

Basis Step:

Recursive Step: Consider arbitrary (x, y) ∈ P . To show is:

(x+ y is an even integer) → (sum of coordinates of next position is even integer)

Assume as the induction hypothesis, IH that:
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The set N is recursively defined. Therefore, the function sumPow : N → N which computes, for input i,
the sum of the nonnegative powers of 2 up to and including exponent i is defined recursively by

Basis step: sumPow(0) = 1

Recursive step: If x ∈ N, then sumPow(x+ 1) = sumPow(x) + 2x+1

sumPow(0) =

sumPow(1) =

sumPow(2) =

Fill in the blanks in the following proof of

∀n ∈ N (sumPow(n) = 2n+1 − 1)

Proof: Since N is recursively defined, we proceed by .

Basis case: We need to show that . Evaluating each side: LHS = sumPow(0) =

1 by the basis case in the recursive definition of sumPow; RHS = 20+1 − 1 = 21 − 1 = 2 − 1 = 1. Since
1 = 1, the equality holds.

Recursive case: Consider arbitrary natural number n and assume, as the that

sumPow(n) = 2n+1 − 1. We need to show that . Evaluating each side:

LHS = sumPow(n+ 1)
rec def
= sumPow(n) + 2n+1 IH

= (2n+1 − 1) + 2n+1.

RHS = 2(n+1)+1 − 1
exponent rules

= 2 · 2n+1 − 1 =
(
2n+1 + 2n+1

)
− 1

regrouping
= (2n+1 − 1) + 2n+1

Thus, LHS = RHS. The structural induction is complete and we have proved the universal generalization.
□

Proof by Mathematical Induction
To prove a universal quantification over the set of all integers greater than or equal to some base integer b,

Basis Step: Show the property holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the induction
hypothesis) that the property holds for n, and use this and other facts to prove that the property
holds for n+ 1.
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Review

1.

Recall the set P defined by the recursive definition

Basis Step: (0, 0) ∈ P
Recursive Step: If (x, y) ∈ P then (x+ 1, y + 1) ∈ P and (x+ 1, y − 1) ∈ P and

(x− 1, y − 1) ∈ P and (x− 1, y + 1) ∈ P

(a) Select all and only the ordered pairs below that are elements of P

i. (0, 0)

ii. (4, 0)

iii. (1, 1)

iv. (1.5, 2.5)

v. (0,−2)

(b) What is another description of the set P ? (Select all and only the true descriptions.)

i. Z× Z
ii. {(n, n) | n ∈ Z}
iii. {(a, b) ∈ Z× Z | (a+ b) mod 2 = 0}

2.

Select all and only the true statements below about the relationship between structural induction and
mathematical induction.

(a) Both structural induction and mathematical induction are proof strategies that may be useful
when proving universal claims about recursively defined sets.

(b) Mathematical induction is a special case of structural induction, for the case when the domain
of quantification is {n ∈ Z | n ≥ b} for some integer b.

(c) Universal claims about the set of all integers may be proved using structural induction but not
using mathematical induction.
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3.

Consider the following function definitions

2n : N → N given by 20 = 1 and 2n+1 = 2 · 2n

n! : N → N given by 0! = 1 and (n+ 1)! = (n+ 1)n!

(a) Select all and only true statements below:

i. 20 < 0!

ii. 21 < 1!

iii. 22 < 2!

iv. 23 < 3!

v. 24 < 4!

vi. 25 < 5!

vii. 26 < 6!

viii. 27 < 7!

(b) Fill in the blanks in the following proof.

Claim: For all integers n greater than or equal to 4, 2n < n!

Proof: We proceed by mathematical induction on the set of integers greater than or equal to 4.

Basis step: Using the BLANK 1 ,

24 = 2 · 23 = 2 · 2 · 22 = 2 · 2 · 2 · 21 = 2 · 2 · 2 · 2 · 20 = 2 · 2 · 2 · 2 · 1 = 16

and
4! = 4 · 3! = 4 · 3 · 2! = 4 · 3 · 2 · 1! = 4 · 3 · 2 · 1 · 0! = 4 · 3 · 2 · 1 · 1 = 24

Since 16 < 24, we have proved that 24 < 4! , as required.

Recursive step: Consider an arbitrary integer k that is greater than or equal to 4 and assume
as the BLANK 2 , that 2k < k! . We want to show that 2k+1 < (k + 1)! .

2k+1 = 2 · 2k by BLANK3

< 2 · k! by BLANK4

< k · k! by BLANK5

< (k + 1) · k! by BLANK6

= (k + 1)! by BLANK7

as required.

i. properties of addition, multiplication, and < for real numbers

ii. definitions of the functions 2n and n!

iii. definition of k

iv. induction hypothesis
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Friday November 5

Definition The set of linked lists of natural numbers L is defined recursively by

Basis Step: [] ∈ L
Recursive Step: If l ∈ L and n ∈ N, then (n, l) ∈ L

Visually:

Example: the list with two nodes whose first node has 20 and whose second node has 42

Definition: The length of a linked list of natural numbers L, length : L → N is defined by

Basis Step: length( [] ) = 0
Recursive Step: If l ∈ L and n ∈ N, then length( (n, l) ) = 1 + length(l)

Definition: The function prepend : L×N → L that adds an element at the front of a linked list is defined
by

Definition The function append : L×N → L that adds an element at the end of a linked list is defined by

Basis Step: If m ∈ N then
Recursive Step: If l ∈ L and n ∈ N and m ∈ N, then
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Claim: ∀l ∈ L ( length( append( (l, 100) ) ) > length(l) )

Proof: By structural induction on L, we have two cases:

Basis Step

1. To Show length( append( ([], 100) ) ) > length( [] ) Because [] is the only element defined in the basis
step of L, we only need to prove that the property
holds for [].

2. To Show length( (100, []) ) > length( [] ) By basis step in definition of append.

3. To Show (1 + length( [] )) > length( [] ) By recursive step in definition of length.

4. To Show 1 + 0 > 0 By basis step in definition of length.

5. T By properties of integers

QED Because we got to T only by rewriting To Show
to equivalent statements, using well-defined proof
techniques, and applying definitions.

Recursive Step

Consider an arbitrary: l′ ∈ L, n ∈ N, and we assume as the induction hypothesis that:

length( append( (l′, 100 ) ) ) > length(l′)

Our goal is to show that length( append( ( (n, l′), 100 ) ) ) > length( (n, l′) ) is also true. We start by
working with one side of the candidate inequality:

LHS = length( append( ( (n, l′), 100 ) ) )

= length( (n, append( (l′, 100) ) ) ) by the recursive definition of append

= 1 + length( append( (l′, 100) ) ) by the recursive definition of length

> 1 + length(l′) by the induction hypothesis

= length((n, l′)) by the recursive definition of length

= RHS
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Prove or disprove: ∀n ∈ N ∃l ∈ L ( length(l) = n )
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Review

Recall the definition of linked lists from class.

Consider this (incomplete) definition:

Definition The function increment : that adds 1 to the data in each node of a linked list is
defined by:

increment : →
Basis Step: increment([]) = []
Recursive Step: If l ∈ L, n ∈ N increment((n, l)) = (1 + n, increment(l))

Consider this (incomplete) definition:

Definition The function sum : L → N that adds together all the data in nodes of the list is defined by:

sum : L → N
Basis Step: sum([]) = 0
Recursive Step: If l ∈ L, n ∈ N sum((n, l)) =

You will compute a sample function application and then fill in the blanks for the domain and codomain
of each of these functions.

1. Based on the definition, what is the result of increment((4, (2, (7, []))))? Write your answer directly
with no spaces.

2. Which of the following describes the domain and codomain of increment?

(a) The domain is L and the codomain is N
(b) The domain is L and the codomain is N× L

(c) The domain is L×N and the codomain is L

(d) The domain is L×N and the codomain is N
(e) The domain is L and the codomain is L

(f) None of the above

3. Assuming we would like sum((5, (6, []))) to evaluate to 11 and sum((3, (1, (8, [])))) to evaluate to 12,
which of the following could be used to fill in the definition of the recursive case of sum?

(a)

{
1 + sum(l) when n ̸= 0

sum(l) when n = 0

(b) 1 + sum(l)

(c) n+ increment(l)

(d) n+ sum(l)

(e) None of the above
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4. Choose only and all of the following statements that are well-defined; that is, they correctly reflect
the domains and codomains of the functions and quantifiers, and respect the notational conventions
we use in this class. Note that a well-defined statement may be true or false.

(a) ∀l ∈ L (sum(l))

(b) ∃l ∈ L (sum(l) ∧ length(l))

(c) ∀l ∈ L (sum(increment(l)) = 10)

(d) ∃l ∈ L (sum(increment(l)) = 10)

(e) ∀l ∈ L∀n ∈ N ((n× l) ⊆ L)

(f) ∀l1 ∈ L∃l2 ∈ L (increment(sum(l1)) = l2)

(g) ∀l ∈ L (length(increment(l)) = length(l))

5. Choose only and all of the statements in the previous part that are both well-defined and true.
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