
Week9

Monday November 22

Definition: When A and B are sets, we say any subset of A×B is a binary relation. A relation R can
also be represented as

• A function fTF : A×B → {T, F} where, for a ∈ A and b ∈ B, fTF ( (a, b) ) =

{
T when (a, b) ∈ R

F when (a, b) /∈ R

• A function fP : A → P(B) where, for a ∈ A, fP(a) = {b ∈ B | (a, b) ∈ R}

When A is a set, we say any subset of A× A is a (binary) relation on A.

For relation R on a set A, we can represent this relation as a graph: a collection of nodes (vertices) and
edges (arrows). The nodes of the graph are the elements of A and there is an edge from a to b exactly when
(a, b) ∈ R.

Example: For A = P(R), we can define the relation EQR on A as

{(X1, X2) ∈ P(R)× P(R) | |X1| = |X2|}

Example: Let R(mod n) be the set of all pairs of integers (a, b) such that (a mod n = b mod n). Then a is
congruent to b mod n means (a, b) ∈ R(mod n). A common notation is to write this as a ≡ b(mod n).

R(mod n) is a relation on the set

Some example elements of R(mod 4) are:
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A relation R on a set A is called reflexive means (a, a) ∈ R for every element a ∈ A.

Informally, every element is related to itself.

Graphically, there are self-loops (edge from a node back to itself) at every node.

A relation R on a set A is called symmetric means (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A.

Informally, order doesn’t matter for this relation.

Graphically, every edge has a paired “backwards” edge so we might as well drop the arrows and think of
edges as undirected.

A relation R on a set A is called transitive means whenever (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for
all a, b, c ∈ A.

Informally, chains of relations collapse.

Graphically, there’s a shortcut between any endpoints of a chain of edges.

A relationR on a setA is called antisymmetricmeans ∀a ∈ A ∀b ∈ A ( ( (a, b) ∈ R ∧ (b, a) ∈ R ) → a = b )

Informally, the relation has directionality.

Graphically, can organize the nodes of the graph so that all non-self loop edges go up.
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When the domain is {a, b, c, d, e, f, g, h} define a relation that is not reflexive and is not symmetric and
is not transitive.

When the domain is {a, b, c, d, e, f, g, h} define a relation that is not reflexive but is symmetric and is
transitive.

When the domain is {a, b, c, d, e, f, g, h} define a relation that is symmetric and is antisymmetric.

Is the relation EQR reflexive? symmetric? transitive? antisymmetric?

Is the relation R(mod 4) reflexive? symmetric? transitive? antisymmetric?

Is the relation Sub on W = P({1, 2, 3, 4, 5}) given by Sub = {(X, Y ) | X ⊆ Y } reflexive? symmetric?
transitive? antisymmetric?
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A relation is an equivalence relation means it is reflexive, symmetric, and transitive.

A relation is a partial ordering (or partial order) means it is reflexive, antisymmetric, and transitive.

For a partial ordering, its Hasse diagram is a graph whose nodes (vertices) are the elements of the domain
of the binary relation and which are located such that nodes connected to nodes above them by (undirected)
edges indicate that the relation holds between the lower node and the higher node. Moreover, the diagram
omits self-loops and omits edges that are guaranteed by transitivity.

Draw the Hasse diagram of the partial order on the set {a, b, c, d, e, f, g} defined as

{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g),
(a, c), (a, d), (d, g), (a, g), (b, f), (b, e), (e, g), (b, g)}

Summary: binary relations can be useful for organizing elements in a domain. Some binary relations
have special properties that make them act like some familiar relations. Equivalence relations (reflexive,
symmetric, transitive binary relations) “act like” equals. Partial orders (reflexive, antisymmetric, transitive
binary relations) “act like” less than or equals to.
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Review

1.

Recall that the binary relation EQR on P(R) is

{(X1, X2) ∈ P(R)× P(R) | |X1| = |X2|}

and R(mod n) is the set of all pairs of integers (a, b) such that (a mod n = b mod n).

Select all and only the correct items.

(a) (Z,R) ∈ EQR

(b) (0, 1) ∈ EQR

(c) (∅, ∅) ∈ EQR

(d) (−1, 1) ∈ R(mod 2)

(e) (1,−1) ∈ R(mod 3)

(f) (4, 16, 0) ∈ R(mod 4)

2.

Consider the binary relation on Z+ defined by {(a, b) | ∃c ∈ Z(b = ac)}. Select all and only the
properties that this binary relation has.

(a) It is reflexive.

(b) It is symmetric.

(c) It is transitive.

(d) It is antisymmetric.

3.

(a) Consider the partial order on the set P({1, 2, 3}) given by the binary relation {(X, Y ) | X ⊆ Y }
i. How many nodes are in the Hasse diagram of this partial order?

ii. How many edges are in the Hasse diagram of this partial order?

(b) Consider the binary relation on {1, 2, 4, 5, 10, 20} defined by {(a, b) | ∃c ∈ Z(b = ac)}.
i. How many nodes are in the Hasse diagram of this partial order?

ii. How many edges are in the Hasse diagram of this partial order?
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Wednesday November 24

Exploring equivalence relations

A partition of a set A is a set of non-empty, disjoint subsets A1, A2, · · · , An such that

A =
n⋃

i=1

Ai = {x | ∃i(x ∈ Ai)}

An equivalence class of an element a ∈ A with respect to an equivalence relation R on the set A is the
set

{s ∈ A | (a, s) ∈ R}

We write [a]R for this set, which is the equivalence class of a with respect to R.

Fact: When R is an equivalence relation on a nonempty set A, the collection of equivalence classes of R is
a partition of A.

Also, given a partition P of A, the relation RP on A given by

RP = {(x, y) ∈ A× A | x and y are in the same part of the partition P}

is an equivalence relation on A.

Recall: We say a is congruent to b mod n means (a, b) ∈ R(mod n). A common notation is to write this
as a ≡ b(mod n).

We can partition the set of integers using equivalence classes of R(mod 4)

[0]R(mod 4)
=

[1]R(mod 4)
=

[2]R(mod 4)
=

[3]R(mod 4)
=

[4]R(mod 4)
=

[5]R(mod 4)
=

[−1]R(mod 4)
=

Z = [0]R(mod 4)
∪ [1]R(mod 4)

∪ [2]R(mod 4)
∪ [3]R(mod 4)

Integers are useful because they can be used to encode other objects and have multiple representations.
However, infinite sets are sometimes expensive to work with computationally. Reducing our attention to
a partition of the integers based on congrunce mod n, where each part is represented by a (not too large)
integer gives a useful compromise where many algebraic properties of the integers are preserved, and we
also get the benefits of a finite domain. Moreover, modular arithmetic is well-suited to model any cyclic
behavior.
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Lemma: For a, b ∈ Z and positive integer n, (a, b) ∈ R(mod n) if and only if n|a− b.

Proof:

Application: Cycling

How many minutes past the hour are we at? Model with +15 mod 60

Time: 12:00pm 12:15pm 12:30pm 12:45pm 1:00pm 1:15pm 1:30pm 1:45pm 2:00pm
“Minutes past”: 0 15 30 45 0 15 30 45 0

Replace each English letter by a letter that’s fifteen ahead of it in the alphabet Model with +15 mod 26

Original index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Original letter: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Shifted letter: P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Shifted index: 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Modular arithmetic:

Lemma: For a, b, c, d ∈ Z and positive integer n, if a ≡ b ( mod n) and c ≡ d ( mod n) then a + c ≡
b + d ( mod n) and ac ≡ bd ( mod n). Informally: can bring mod “inside” and do it first, for addition
and for multiplication.

(102 + 48) mod 10 =

(7 · 10) mod 5 =

(25) mod 3 =
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Application: Cryptography

Definition: Let a be a positive integer and p be a large1 prime number, both known to everyone. Let k1
be a secret large number known only to person P1 (Alice) and k2 be a secret large number known only to
person P2 (Bob). Let the Diffie-Helman shared key for a, p, k1, k2 be (ak1·k2 mod p).

Idea: P1 can quickly compute the Diffie-Helman shared key knowing only a, p, k1 and the result of
ak2 mod p (that is, P1 can compute the shared key without knowing k2, only ak2 mod p). Similarly,
P2 can quickly compute the Diffie-Helman shared key knowing only a, p, k2 and the result of ak1 mod p
(that is, P2 can compute the shared key without knowing k1, only ak1 mod p). But, any person P3 who
knows neither k1 nor k2 (but may know any and all of the other values) cannot compute the shared secret
efficiently.

Key property for *shared* secret:

∀a ∈ Z∀b ∈ Z∀g ∈ Z+ ∀n ∈ Z+((ga mod n)b, (gb mod n)a) ∈ R(mod n)

Key property for shared *secret*:

There are efficient algorithms to calculate the result of modular exponentiation but there are no (known)
efficient algorithms to calculate discrete logarithm.

1We leave the definition of “large” vague here, but think hundreds of digits for practical applications. In practice, we also
need a particular relationship between a and p to hold, which we leave out here.

CC BY-NC-SA 2.0 Version August 29, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Review

1.

Fill in the blanks in the following proof that, for any equivalence relation R on a set A,

∀a ∈ A ∀b ∈ A ((a, b) ∈ R ↔ [a]R ∩ [b]R ̸= ∅)

Proof: Towards a (a) , consider arbitrary elements a, b in A. We will prove the
biconditional statement by proving each direction of the conditional in turn.

Goal 1: we need to show (a, b) ∈ R → [a]R ∩ [b]R ̸= ∅ Proof of Goal 1: Assume towards a
(b) that (a, b) ∈ R. We will work to show that [a]R ∩ [b]R ̸= ∅. Namely, we
need an element that is in both equivalence classes, that is, we need to prove the existential claim
∃x ∈ A (x ∈ [a]R ∧ x ∈ [b]R). Towards a (c) , consider x = b, an element of A by
definition. By (d) of R, we know that (b, b) ∈ R and thus, b ∈ [b]R. By assumption
in this proof, we have that (a, b) ∈ R, and so by definition of equivalence classes, b ∈ [a]R. Thus, we
have proved both conjuncts and this part of the proof is complete.

Goal 2: we need to show [a]R ∩ [b]R ̸= ∅ → (a, b) ∈ R Proof of Goal 2: Assume towards a
(e) that [a]R ∩ [b]R ̸= ∅. We will work to show that (a, b) ∈ R. By our as-
sumption, the existential claim ∃x ∈ A (x ∈ [a]R ∧ x ∈ [b]R) is true. Call w a witness; thus, w ∈ [a]R
and w ∈ [b]R. By definition of equivalence classes, w ∈ [a]R means (a, w) ∈ R and w ∈ [b]R means
(b, w) ∈ R. By (f) of R, (w, b) ∈ R. By (g) of R, since (a, w) ∈ R
and (w, b) ∈ R, we have that (a, b) ∈ R, as required for this part of the proof.

Consider the following expressions as options to fill in the two proofs above. Give your answer as one
of the numbers below for each blank a-c. You may use some numbers for more than one blank, but
each letter only uses one of the expressions below.

i exhaustive proof

ii proof by universal generalization

iii proof of existential using a witness

iv proof by cases

v direct proof

vi proof by contrapositive

vii proof by contradiction

viii reflexivity

ix symmetry

x transitivity

2.

Modular exponentiation is required to carry out the Diffie-Helman protocol for computing a shared
secret over an unsecure channel.

Consider the following algorithm for fast exponentiation (based on binary expansion of the exponent).

Modular Exponentation
1 procedure modular exponentiation(b : i n t e g e r ;
2 n = (ak−1ak−2 . . . a1a0)2 , m : p o s i t i v e i n t e g e r s )
3 x := 1
4 power := b mod m
5 for i:= 0 to k − 1
6 i f ai = 1 then x:= (x · power) mod m
7 power := (power · power) mod m
8 return x {x equals bn mod m}
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(a) If we wanted to calculate 38 mod 7 using the modular exponentation algorithm above, what are
the values of the parameters b, n, andm? (Write these values in usual, decimal-like, mathematical
notation.)

(b) Give the output of the modular exponentiation algorithm with these parameters, i.e. calculate
38 mod 7. (Write these values in usual, decimal-like, mathematical notation.)
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Friday November 26

No class, in observance of Thanksgiving holiday.
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