
complete-week

Before we start

If you or someone you know is suffering from food and/or housing insecurities there are UCSD resources
here to help:

Basic Needs Office: https://basicneeds.ucsd.edu/

Triton Food Pantry (in the old Student Center) is free and anonymous, and includes produce:

https://www.facebook.com/tritonfoodpantry/

Mutual Aid UCSD: https://mutualaiducsd.wordpress.com/

If you find yourself in an uncomfortable situation, ask for help. We are committed to upholding University
policies regarding nondiscrimination, sexual violence and sexual harassment.

Counseling and Psychological Services (CAPS) at 858 5343755 or http://caps.ucsd.edu

OPHD at (858) 534-8298, ophd@ucsd.edu , http://ophd.ucsd.edu. CARE at Sexual Assault Resource
Center at 858 5345793 sarc@ucsd.edu http://care.ucsd.edu

Pandemic resilient instruction

Fall 2021 is a transition quarter so please be patient with us as we do our best to serve the needs of
all students while adhering to the university guidelines. First and foremost is the health and safety of
everyone. Please do not come to class if you are sick or even think you might be sick. Please reach out
(minnes@eng.ucsd.edu) if you need support with extenuating circumstances.

Masks are required in class. All students who attend class must also be fully vaccinated against COVID-19
unless they have a university-approved exemption. Campus policy requires masks and daily “symptom
screeners” for everyone and we expect all students to follow these rules.

CC BY-NC-SA 2.0 Version August 29, 2024 (1)

https://basicneeds.ucsd.edu/
https://www.facebook.com/tritonfoodpantry/
https://mutualaiducsd.wordpress.com/
http://caps.ucsd.edu
http://ophd.ucsd.edu
http://care.ucsd.edu
https://creativecommons.org/licenses/by-nc-sa/2.0/

Welcome to CSE 20: Discrete Math for Computer Science in Fall 2021!

Themes and applications for CSE 20

• Technical skepticism: Know, select and apply appropriate computing knowledge and problem-
solving techniques. Reason about computation and systems. Use mathematical techniques to solve
problems. Determine appropriate conceptual tools to apply to new situations. Know when tools do
not apply and try different approaches. Critically analyze and evaluate candidate solutions.

• Multiple representations: Understand, guide, shape impact of computing on society/the world.
Connect the role of Theory CS classes to other applications (in undergraduate CS curriculum and
beyond). Model problems using appropriate mathematical concepts. Clearly and unambiguously
communicate computational ideas using appropriate formalism. Translate across levels of abstraction.

Applications: Numbers (how to represent them and use them in Computer Science), Recommendation
systems and their roots in machine learning (with applications like Netflix), “Under the hood” of computers
(circuits, pixel color representation, data structures), Codes and information (secret message sharing and
error correction), Bioinformatics algorithms and genomics (DNA and RNA).

Introductions

Class website: http://cseweb.ucsd.edu/classes/fa21/cse20-a

Pro-tip: the URL structure is your map to finding your course website for other CSE classes.

Pro-tip: you can use MATH109 to replace CSE20 for prerequisites and other requirements.

Instructor: Prof. Mia Minnes ”Minnes” rhymes with Guinness, minnes@eng.ucsd.edu, http://cseweb.ucsd.edu/ minnes

Our team: Four TAs and 10 tutors + all of you

Fill in contact info for students around you, if you’d like:

On a typical week: MWF Lectures + review quizzes, T HW due, W Discussion, office hours, Piazza.
Project parts will be due some weeks.

All dates are on Canvas (click for link) and details are on course calendar (click for link).

Education research: CSE 20 is participating in a project on retention and sense of community in UCSD
majors; see research plan. If you consent to participate in this study, no action is needed. If you DO NOT
consent to participate in this study, or you choose to opt-out at any time during the a cademic year, sign
and submit this form to the research contact at retentionstudy@cs.ucsd.edu.

CC BY-NC-SA 2.0 Version August 29, 2024 (2)

http://cseweb.ucsd.edu/classes/fa21/cse20-a
http://cseweb.ucsd.edu/~minnes
https://canvas.ucsd.edu/
https://discrete-math-for-cs.github.io/website/overview_calendar.html
https://discrete-math-for-cs.github.io/files/CSInclusiveMentoringConsentFormNonCSEDataAnalysis.pdf
https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday September 24

What data should we encode about each Netflix account holder to help us make effective recommendations?

In machine learning, clustering can be used to group similar data for prediction and recommendation. For
example, each Netflix user’s viewing history can be represented as a n-tuple indicating their preferences
about movies in the database, where n is the number of movies in the database. People with similar tastes
in movies can then be clustered to provide recommendations of movies for one another. Mathematically,
clustering is based on a notion of distance between pairs of n-tuples.

In the table below, each row represents a user’s ratings of movies: ✓ (check) indicates the person liked the
movie, ✗ (x) that they didn’t, and • (dot) that they didn’t rate it one way or another (neutral rating or
didn’t watch). Can encode these ratings numerically with 1 for ✓ (check), −1 for ✗ (x), and 0 for • (dot).

Person Fyre Frozen II Picard Ratings written as a 3-tuple
P1 ✗ • ✓

P2 ✓ ✓ ✗

P3 ✓ ✓ ✓

P4 • ✗ ✓

Conclusion: Modeling involves choosing data types to represent and organize data

CC BY-NC-SA 2.0 Version August 29, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 0 Friday

1. Please complete the beginning of the quarter survey https://forms.gle/gvibFnNixxqcWbaU8

2. We want you to be familiar with class policies and procedures so you are ready to have a successful
quarter. Please take a look at the class website http://cseweb.ucsd.edu/classes/fa21/cse20-a and
answer the questions about it on Gradescope.

3. Modeling:

(a) Using the example movie database from class with the 3 movies Fyre, Frozen II, Picard, which
of the following is a 3-tuple that represents the ratings of a user who liked Frozen II? (Select all
and only that apply.)

i. 1

ii. (0, 0, 0)

iii. [1, 1, 1]

iv. {−1, 0, 1}
v. (1,−1, 0)

vi. (0, 1, 1)

vii. (1, 1, 1, 1)

(b) Using the example movie database from class with the 3 movies Fyre, Frozen II, Picard, how
many distinct (different) 3-tuples of ratings are there?

CC BY-NC-SA 2.0 Version August 29, 2024 (4)

https://forms.gle/gvibFnNixxqcWbaU8
http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday September 27

Notation and prerequisites

Term Notation Example(s) We say in English . . .
sequence x1, . . . , xn A sequence x1 to xn

summation
∑n

i=1 xi or
n∑

i=1

xi The sum of the terms of the sequence x1 to xn

all reals R The (set of all) real numbers (numbers on the number
line)

all integers Z The (set of all) integers (whole numbers including neg-
atives, zero, and positives)

all positive integers Z+ The (set of all) strictly positive integers
all natural numbers N The (set of all) natural numbers. Note: we use the

convention that 0 is a natural number.

piecewise rule definition f(x) =

{
x if x ≥ 0

−x if x < 0
Define f of x to be x when x is nonnegative and to be
−x when x is negative

function application f(7) f of 7 or f applied to 7 or the image of 7 under f
f(z) f of z or f applied to z or the image of z under f
f(g(z)) f of g of z or f applied to the result of g applied to z

absolute value |−3| The absolute value of −3

square root
√
9 The non-negative square root of 9

Data Types: sets, n-tuples, and strings

Term Examples:
(add additional examples from class)

set
unordered collection of elements

7 ∈ {43, 7, 9} 2 /∈ {43, 7, 9}

repetition doesn’t matter
Equal sets agree on membership of all elements
n-tuple
ordered sequence of elements with n “slots” (n > 0)
repetition matters, fixed length
Equal n-tuples have corresponding components equal
string
ordered finite sequence of elements each from specified set
repetition matters, arbitrary finite length
Equal strings have same length and corresponding characters equal

CC BY-NC-SA 2.0 Version August 29, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Special cases:

When n = 2, the 2-tuple is called an ordered pair.

A string of length 0 is called the empty string and is denoted λ.

A set with no elements is called the empty set and is denoted {} or ∅.

To define sets:

To define a set using roster method, explicitly list its elements. That is, start with { then list elements
of the set separated by commas and close with }.

To define a set using set builder definition, either form “The set of all x from the universe U such that
x is ...” by writing

{x ∈ U | ...x...}
or form “the collection of all outputs of some operation when the input ranges over the universe U” by
writing

{...x... | x ∈ U}

We use the symbol ∈ as “is an element of” to indicate membership in a set.

Example sets: For each of the following, identify whether it’s defined using the roster method or set
builder notation and give an example element.

{−1, 1}

{0, 0}

{−1, 0, 1}

{(x, x, x) | x ∈ {−1, 0, 1}}

{}

{x ∈ Z | x ≥ 0}

{x ∈ Z | x > 0}

{A, C, U, G}

{AUG, UAG, UGA, UAA}

CC BY-NC-SA 2.0 Version August 29, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

RNA is made up of strands of four different bases that encode genomic information in specific ways.
The bases are elements of the set B = {A, C, U, G}.

Formally, to define the set of all RNA strands, we need more than roster method or set builder descriptions.

New! Recursive Definitions of Sets: The set S (pick a name) is defined by:

Basis Step: Specify finitely many elements of S
Recursive Step: Give rule(s) for creating a new element of S from known values existing in S,

and potentially other values.

The set S then consists of all and only elements that are put in S by finitely many (a nonnegative integer
number) of applications of the recursive step after the basis step.

Definition The set of nonnegative integers N is defined (recursively) by:

Basis Step:
Recursive Step:

Examples:

Definition The set of all integers Z is defined (recursively) by:

Basis Step:
Recursive Step:

Examples:

Definition The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

Examples:

Definition The set of bitstrings (strings of 0s and 1s) is defined (recursively) by:

Basis Step:
Recursive Step:

Notation: We call the set of bitstrings {0, 1}∗.

Examples:

CC BY-NC-SA 2.0 Version August 29, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 1 Monday

1. Colors can be described as amounts of red, green, and blue mixed together1 Mathematically, a color
can be represented as a 3-tuple (r, g, b) where r represents the red component, g the green component,
b the blue component and where each of r, g, b must be a value from this collection of numbers:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252,
253, 254, 255}

(a) True or False: (1, 3, 4) fits the definition of a color above.

(b) True or False: (1, 100, 200, 0) fits the definition of a color above.

(c) True or False: (510, 255) fits the definition of a color above.

(d) True or False: There is a color (r1, g1, b1) where r1 + g1 + b1 is greater than 765.

(e) True or False: There is a color (r2, g2, b2) where r2 + g2 + b2 is equal to 1.

(f) True or False: Another way to write the collection of allowed values for red, green, and blue
components is

{x ∈ N | 0 ≤ x ≤ 255}

.

(g) True or False: Another way to write the collection of allowed values for red, green, and blue
components is

{n ∈ Z | 0 ≤ n ≤ 255}

.

(h) True or False: Another way to write the collection of allowed values for red, green, and blue
components is

{y ∈ Z | −1 < y ≤ 255}

.

2. Sets are unordered collections. In class, we saw some examples of sets and also how to define sets
using roster method and set builder notation.

(a) Select all and only the sets below that have 0 as an element.

i. {−1, 1}
1This RGB representation is common in web applications. Many online tools are available to play around with mixing

these colors, e.g. https://www.w3schools.com/colors/colors_rgb.asp.

CC BY-NC-SA 2.0 Version August 29, 2024 (8)

https://www.w3schools.com/colors/colors_rgb.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

ii. {0, 0}
iii. {−1, 0, 1}
iv. Z
v. Z+

vi. N
(b) Select all and only the sets below that have the ordered pair (2, 0) as an element.

i. {x | x ∈ N}
ii. {(x, x) | x ∈ N}
iii. {(x, x− 2) | x ∈ N}
iv. {(x, y) | x ∈ Z+, y ∈ Z}

3. Which of the following are (recursive) definitions of the set of integers Z? (Select True/False for each
one.)

(a)
Basis Step: 5 ∈ Z
Recursive Step: If x ∈ Z, then x+ 1 ∈ Z and x− 1 ∈ Z

(b)

Basis Step: 0 ∈ Z
Recursive Step: If x ∈ Z, then x+ 1 ∈ Z and x− 1 ∈ Z and x+ 2 ∈ Z and x− 2 ∈ Z

(c)
Basis Step: 0 ∈ Z
Recursive Step: If x ∈ Z, then x+ 2 ∈ Z and x− 1 ∈ Z

(d)
Basis Step: 0 ∈ Z
Recursive Step: If x ∈ Z, then x+ 1 ∈ Z and x+ 2 ∈ Z

CC BY-NC-SA 2.0 Version August 29, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday September 29

To define a set we can use the roster method, set builder notation, a recursive definition, and also we can
apply a set operation to other sets.

New! Cartesian product of sets and set-wise concatenation of sets of strings

Definition: Let X and Y be sets. The Cartesian product of X and Y , denoted X × Y , is the set of all
ordered pairs (x, y) where x ∈ X and y ∈ Y

X × Y = {(x, y) | x ∈ X and y ∈ Y }

Definition: Let X and Y be sets of strings over the same alphabet. The set-wise concatenation of X
and Y , denoted X ◦ Y , is the set of all results of string concatenation xy where x ∈ X and y ∈ Y

X ◦ Y = {xy | x ∈ X and y ∈ Y }

Pro-tip: the meaning of writing one element next to another like xy depends on the data-types of x and
y. When x and y are strings, the convention is that xy is the result of string concatenation. When x and
y are numbers, the convention is that xy is the result of multiplication. This is (one of the many reasons)
why is it very important to declare the data-type of variables before we use them.

Fill in the missing entries in the table:

Set Example elements in this set:

B A C G U

(A, C) (U, U)

B × {−1, 0, 1}

{−1, 0, 1} ×B

(0, 0, 0)

{A, C, G, U} ◦ {A, C, G, U}

GGGG

CC BY-NC-SA 2.0 Version August 29, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

New! Defining functions A function is defined by its (1) domain, (2) codomain, and (3) rule assigning
each element in the domain exactly one element in the codomain.

The domain and codomain are nonempty sets.
The rule can be depicted as a table, formula, or English description.
The notation is

“Let the function FUNCTION-NAME: DOMAIN → CODOMAIN be given by
FUNCTION-NAME(x) = . . . for every x ∈ DOMAIN”.

or

“Consider the function FUNCTION-NAME: DOMAIN → CODOMAIN given by
FUNCTION-NAME(x) = . . . for every x ∈ DOMAIN”.

Example: The absolute value function

Domain

Codomain

Rule

Recall our representation of Netflix users’ ratings of movies as n-tuples, where n is the number of movies
in the database. Each component of the n-tuple is −1 (didn’t like the movie), 0 (neutral rating or didn’t
watch the movie), or 1 (liked the movie).

Consider the ratings P1 = (−1, 0, 1), P2 = (1, 1,−1), P3 = (1, 1, 1), P4 = (0,−1, 1)

Which of P1, P2, P3 has movie preferences most similar to P4?

One approach to answer this question: use functions to define distance between user preferences.

For example, consider the function d0 : →
given by

d0(((x1, x2, x3), (y1, y2, y3))) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

Extra example: A new movie is released, and P1 and P2 watch it before P3, and give it ratings; P1 gives
✓ and P2 gives ✗. Should this movie be recommended to P3? Why or why not?

Extra example: Define a new function that could be used to compare the 4-tuples of ratings encoding movie
preferences now that there are four movies in the database.

CC BY-NC-SA 2.0 Version August 29, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

When the domain of a function is a recursively defined set, the rule assigning images to domain elements
(outputs) can also be defined recursively.

Recall: The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

Definition (Of a function, recursively) A function rnalen that computes the length of RNA strands in S
is defined by:

rnalen : S → Z+

Basis Step: If b ∈ B then rnalen(b) = 1
Recursive Step: If s ∈ S and b ∈ B, then rnalen(sb) = 1 + rnalen(s)

The domain of rnalen is

The codomain of rnalen is

Example function application:

rnalen(ACU) =

Extra example: A function basecount that computes the number of a given base b appearing in a RNA
strand s is defined recursively:

basecount : S ×B → N

Basis Step: If b1 ∈ B, b2 ∈ B basecount((b1, b2)) =

{
1 when b1 = b2

0 when b1 ̸= b2

Recursive Step: If s ∈ S, b1 ∈ B, b2 ∈ B basecount((sb1, b2)) =

{
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 ̸= b2

basecount((ACU, A)) = basecount((AC, A)) = basecount((A, A)) = 1

basecount((ACU, G)) = basecount((AC, G)) = basecount((A, G)) = 0

Extra example: The function which outputs 2n when given a nonnegative integer n can be defined recursively,
because its domain is the set of nonnegative integers.

CC BY-NC-SA 2.0 Version August 29, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 1 Wednesday

1. RNA is made up of strands of four different bases that encode genomic information in specific ways.
The bases are elements of the set B = {A, C, G, U}. The set of RNA strands S is defined (recursively)
by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

A function rnalen that computes the length of RNA strands in S is defined by:

rnalen : S → Z+

Basis Step: If b ∈ B then rnalen(b) = 1
Recursive Step: If s ∈ S and b ∈ B, then rnalen(sb) = 1 + rnalen(s)

(a) How many distinct elements are in the set described using set builder notation as

{x ∈ S | rnalen(x) = 1} ?

(b) How many distinct elements are in the set described using set builder notation as

{x ∈ S | rnalen(x) = 2} ?

(c) How many distinct elements are in the set described using set builder notation as

{rnalen(x) | x ∈ S and rnalen(x) = 2} ?

(d) How many distinct elements are in the set obtained as the result of the set-wise concatenation
{AA, AC} ◦ {U, AA}?

(e) How many distinct elements are in the set obtained as the result of the Cartesian product
{AA, AC} × {U, AA}?

(f) True or False: There is an example of an RNA strand that is both in the set obtained as the
result of the set-wise concatenation {AA, AC} ◦ {U, AA} and in the set obtained as the result of the
Cartesian product {AA, AC} × {UA, AA}

Bonus - not for credit: Describe each of the sets above using roster method.

2. Recall the function d0 which takes an ordered pair of ratings 3-tuples and returns a measure of the
distance between them given by

d0(((x1, x2, x3), (y1, y2, y3))) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

Consider the function application

d0(((−1, 1, 1), (1, 0,−1)))

(a) What is the input?

(b) What is the output?

3. To give the rule for a recursive definition of the function with codomain Z which gives 2n for a
nonnegative integer n, fill in each step below.

(a) Basis Step: 20 =

(b) Recursive Step: If n ∈ N, then
i. 2n = 2n

ii. 2n+1 = n+ 2

iii. 2n+1 = 2n

CC BY-NC-SA 2.0 Version August 29, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday October 1 (Zoom)

Today’s session is on Zoom, log in with your @ucsd.edu account https://ucsd.zoom.us/j/97431852722
Meeting ID: 974 3185 2722

Modeling uses data-types that are encoded in a computer.

The details of the encoding impact the efficiency of algorithms we use to understand the systems we are
modeling and the impacts of these algorithms on the people using the systems.

Case study: how to encode numbers?

Definition For b an integer greater than 1 and n a positive integer, the base b expansion of n is

(ak−1 · · · a1a0)b

where k is a positive integer, a0, a1, . . . , ak−1 are nonnegative integers less than b, ak−1 ̸= 0, and

n =
k−1∑
i=0

aib
i

Notice: The base b expansion of a positive integer n is a string over the alphabet {x ∈ N | x < b} whose
leftmost character is nonzero.

Base b Collection of possible coefficients in base b expansion of a positive integer

Binary (b = 2) {0, 1}

Ternary (b = 3) {0, 1, 2}

Octal (b = 8) {0, 1, 2, 3, 4, 5, 6, 7}

Decimal (b = 10) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Hexadecimal (b = 16) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}
letter coefficient symbols represent numerical values (A)16 = (10)10

(B)16 = (11)10 (C)16 = (12)10 (D)16 = (13)10 (E)16 = (14)10 (F)16 = (15)10

CC BY-NC-SA 2.0 Version August 29, 2024 (14)

https://ucsd.zoom.us/j/97431852722
https://creativecommons.org/licenses/by-nc-sa/2.0/

Common bases: Binary b = 2 Octal b = 8 Decimal b = 10 Hexadecimal b = 16

Examples:

(1401)2

(1401)10

(1401)16

New! An algorithm is a finite sequence of precise instructions for solving a problem.

Algorithm for calculating integer part of half the input
1 procedure half(n : a p o s i t i v e i n t e g e r)
2 r := 0
3 while n > 1
4 r := r + 1
5 n := n− 2
6 return r {r holds the result of the operation}

n r n > 1?
6

n r n > 1?
5

Algorithm for calculating integer part of log
1 procedure log(n : a p o s i t i v e i n t e g e r)
2 r := 0
3 while n > 1
4 r := r + 1
5 n := half(n)
6 return r {r holds the result of the log operation}

n r n > 1?
8

n r n > 1?
6

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 26 = 64 27 = 128 28 = 256 29 = 512 210 = 1024

CC BY-NC-SA 2.0 Version August 29, 2024 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Integer division and remainders (aka The Division Algorithm) Let n be an integer and d a positive
integer. There are unique integers q and r, with 0 ≤ r < d, such that n = dq + r. In this case, d is
called the divisor, n is called the dividend, q is called the quotient, and r is called the remainder. We write
q = n div d and r = n mod d.

Extra example: How do div and mod compare to / and % in Java and python?

Two algorithms for constructing base b expansion from decimal representation

Most significant first: Start with left-most coefficient of expansion

Calculating integer part of logb
1 procedure logb(n, b : p o s i t i v e i n t e g e r s with b > 1)
2 r := 0
3 while n > b− 1
4 r := r + 1
5 n := n div b
6 return r {r holds the result of the logb operation}

Calculating base b expansion, from left
1 procedure baseb1(n, b : p o s i t i v e i n t e g e r s with b > 1)
2 v := n
3 k := logb(n, b) + 1
4 for i := 1 to k
5 ak−i := 0
6 while v ≥ bk−i

7 ak−i := ak−i + 1
8 v := v − bk−i

9 return (ak−1, . . . , a0){(ak−1 . . . a0)b is the base b expansion of n}

Least significant first: Start with right-most coefficient of expansion

Idea: (when k > 1)

n = ak−1b
k−1 + · · ·+ a1b+ a0

= b(ak−1b
k−2 + · · ·+ a1) + a0

so a0 = n mod b and ak−1b
k−2 + · · · + a1 =

n div b.

Calculating base b expansion, from right
1 procedure baseb2(n, b : p o s i t i v e i n t e g e r s with b > 1)
2 q := n
3 k := 0
4 while q ̸= 0
5 ak := q mod b
6 q := q div b
7 k := k + 1
8 return (ak−1, . . . , a0){(ak−1 . . . a0)b is the base b expansion of n}

CC BY-NC-SA 2.0 Version August 29, 2024 (16)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 1 Friday

1. For many applications in cryptography and random number generation, dividing very large integers
efficiently is critical. Recall the definitions known as The Division Algorithm: Let n be an integer
and d a positive integer. There are unique integers q and r, with 0 ≤ r < d, such that n = dq + r. In
this case, d is called the divisor, n is called the dividend, q is called the quotient, and r is called the
remainder. We write q = n div d and r = n mod d.

One application of the Division Algorithm is in computing the integer part of the logarithm. When
we discuss algorithms in this class, we will usually write them in pseudocode or English. Sometimes
we will find it useful to relate the pseudocode to runnable code in a programming language. We will
typically use Java or python for this.

Calculating log in pseudocode
1 procedure log(n : a p o s i t i v e i n t e g e r)
2 r := 0
3 while n > 1
4 r := r + 1
5 n := n div 2
6 return r {r holds the result of the log operation}

Calculating log in Java
1 int log(int n) {

2 if (n < 1) {

3 throw new IllegalArgumentException ();

4 }

5 int result = 0;

6 while(n > 1) {

7 result = result + 1;

8 n = n / 2;

9 }

10 return result;

11 }

(a) Calculate 2021 div 20. You may use a calculator if you like.

(b) Calculate 2021 mod 20. You may use a calculator if you like.

(c) How many different possible values of r (results of taking n mod d) are there when we consider
positive integer values of n and d is 20?

(d) What is the smallest positive integer n which can be written as 16q + 7 for q an integer?

(e) What is the return value of log(457)? You can run the Java version in order to calculate it.

2. Give the value (using usual mathematical conventions) of each of the following base expansions.

(a) (10)2

(b) (10)4

(c) (17)16

(d) (211)3

(e) (3)8

CC BY-NC-SA 2.0 Version August 29, 2024 (17)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday November 29

Recall:

A relation is an equivalence relation means it is reflexive, symmetric, and transitive.

An equivalence class of an element a ∈ A with respect to an equivalence relation R on the set A is the
set

{s ∈ A | (a, s) ∈ R}

We write [a]R for this set, which is the equivalence class of a with respect to R.

A partition of a set A is a set of non-empty, disjoint subsets A1, A2, · · · , An such that

A =
n⋃

i=1

Ai = {x | ∃i(x ∈ Ai)}

Claim: For each a ∈ U , [a]E ̸= ∅.

Proof: Towards a consider an arbitrary element a in U . We will work to show that
[a]E ̸= ∅, namely that ∃x ∈ [a]E. By definition of equivalence classes, we can rewrite this goal as

∃x ∈ U ((a, x) ∈ E)

Towards a , consider x = a, an element of U by definition. By of E,
we know that (a, a) ∈ E and thus the existential quantification has been proved.

Claim: For each a ∈ U , there is some b ∈ U such that a ∈ [b]E.

Towards a consider an arbitrary element a in U . By definition of equivalence classes, we
can rewrite the goal as

∃b ∈ U ((b, a) ∈ E)

Towards a , consider b = a, an element of U by definition. By of E,
we know that (a, a) ∈ E and thus the existential quantification has been proved.

Claim: For each a, b ∈ U , ((a, b) ∈ E → [a]E = [b]E) and ((a, b) /∈ E → [a]E ∩ [b]E = ∅)

CC BY-NC-SA 2.0 Version August 29, 2024 (18)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Corollary: Given an equivalence relation E on set U , {[x]E | x ∈ U} is a partition of U .

Last time, we saw that partitions associated to equivalence relations were useful in the context of modular
arithmetic. Today we’ll look at a different application.

Recall that in a movie recommendation system, each user’s ratings of movies is represented as a n-tuple
(with the positive integer n being the number of movies in the database), and each component of the n-tuple
is an element of the collection {−1, 0, 1}.

We call Rt5 the set of all ratings 5-tuples.

Define d : Rt5 ×Rt5 → N by

d(((x1, x2, x3, x4, x5), (y1, y2, y3, y4, y5))) =
5∑

i=1

|xi − yi|

Consider the following binary relations on Rt5.

Eproj = {((x1, x2, x3, x4, x5), (y1, y2, y3, y4, y5)) ∈ Rt5 ×Rt5 | (x1 = y1) ∧ (x2 = y2) ∧ (x3 = y3)}

Example ordered pair in Eproj:

Reflexive? Symmetric? Transitive? Antisymmetric?

Edist = {(u, v) ∈ Rt5 ×Rt5 | d((u, v)) ≤ 2}

Example ordered pair in Edist:

Reflexive? Symmetric? Transitive? Antisymmetric?

CC BY-NC-SA 2.0 Version August 29, 2024 (19)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Ecirc = {(u, v) ∈ Rt5 ×Rt5 | d(((0, 0, 0, 0, 0) , u)) = d(((0, 0, 0, 0, 0), v))}
Example ordered pair in Ecirc:

Reflexive? Symmetric? Transitive? Antisymmetric?

The partition of Rt5 defined by is

{ { (−1,−1,−1,−1,−1), (−1,−1,−1,−1, 0), (−1,−1,−1,−1, 1), (−1,−1,−1, 0,−1), (−1,−1,−1, 0, 0), (−1,−1,−1, 0, 1), (−1,−1,−1, 1,−1), (−1,−1,−1, 1, 0), (−1,−1,−1, 1, 1) },
{ (−1,−1, 0,−1,−1), (−1,−1, 0,−1, 0), (−1,−1, 0,−1, 1), (−1,−1, 0, 0,−1), (−1,−1, 0, 0, 0), (−1,−1, 0, 0, 1), (−1,−1, 0, 1,−1), (−1,−1, 0, 1, 0), (−1,−1, 0, 1, 1) },
{ (−1,−1, 1,−1,−1), (−1,−1, 1,−1, 0), (−1,−1, 1,−1, 1), (−1,−1, 1, 0,−1), (−1,−1, 1, 0, 0), (−1,−1, 1, 0, 1), (−1,−1, 1, 1,−1), (−1,−1, 1, 1, 0), (−1,−1, 1, 1, 1) },
{ (−1, 0,−1,−1,−1), (−1, 0,−1,−1, 0), (−1, 0,−1,−1, 1), (−1, 0,−1, 0,−1), (−1, 0,−1, 0, 0), (−1, 0,−1, 0, 1), (−1, 0,−1, 1,−1), (−1, 0,−1, 1, 0), (−1, 0,−1, 1, 1) },
{ (−1, 0, 0,−1,−1), (−1, 0, 0,−1, 0), (−1, 0, 0,−1, 1), (−1, 0, 0, 0,−1), (−1, 0, 0, 0, 0), (−1, 0, 0, 0, 1), (−1, 0, 0, 1,−1), (−1, 0, 0, 1, 0), (−1, 0, 0, 1, 1) },
{ (−1, 0, 1,−1,−1), (−1, 0, 1,−1, 0), (−1, 0, 1,−1, 1), (−1, 0, 1, 0,−1), (−1, 0, 1, 0, 0), (−1, 0, 1, 0, 1), (−1, 0, 1, 1,−1), (−1, 0, 1, 1, 0), (−1, 0, 1, 1, 1) },
{ (−1, 1,−1,−1,−1), (−1, 1,−1,−1, 0), (−1, 1,−1,−1, 1), (−1, 1,−1, 0,−1), (−1, 1,−1, 0, 0), (−1, 1,−1, 0, 1), (−1, 1,−1, 1,−1), (−1, 1,−1, 1, 0), (−1, 1,−1, 1, 1) },
{ (−1, 1, 0,−1,−1), (−1, 1, 0,−1, 0), (−1, 1, 0,−1, 1), (−1, 1, 0, 0,−1), (−1, 1, 0, 0, 0), (−1, 1, 0, 0, 1), (−1, 1, 0, 1,−1), (−1, 1, 0, 1, 0), (−1, 1, 0, 1,−1) },
{ (−1, 1, 1,−1,−1), (−1, 1, 1,−1, 0), (−1, 1, 1,−1, 1), (−1, 1, 1, 0,−1), (−1, 1, 1, 0, 0), (−1, 1, 1, 0, 1), (−1, 1, 1, 1,−1), (−1, 1, 1, 1, 0), (−1, 1, 1, 1, 1) },
{ (0,−1,−1,−1,−1), (0,−1,−1,−1, 0), (0,−1,−1,−1, 1), (0,−1,−1, 0,−1), (0,−1,−1, 0, 0), (0,−1,−1, 0, 1), (0,−1,−1, 1,−1), (0,−1,−1, 1, 0), (0,−1,−1, 1, 1) },
{ (0,−1, 0,−1,−1), (0,−1, 0,−1, 0), (0,−1, 0,−1, 1), (0,−1, 0, 0,−1), (0,−1, 0, 0, 0), (0,−1, 0, 0, 1), (0,−1, 0, 1,−1), (0,−1, 0, 1, 0), (0,−1, 0, 1, 1) },
{ (0,−1, 1,−1,−1), (0,−1, 1,−1, 0), (0,−1, 1,−1, 1), (0,−1, 1, 0,−1), (0,−1, 1, 0, 0), (0,−1, 1, 0, 1), (0,−1, 1, 1,−1), (0,−1, 1, 1, 0), (0,−1, 1, 1, 1) },
{ (0, 0,−1,−1,−1), (0, 0,−1,−1, 0), (0, 0,−1,−1, 1), (0, 0,−1, 0,−1), (0, 0,−1, 0, 0), (0, 0,−1, 0, 1), (0, 0,−1, 1,−1), (0, 0,−1, 1, 0), (0, 0,−1, 1, 1) },
{ (0, 0, 0,−1,−1), (0, 0, 0,−1, 0), (0, 0, 0,−1, 1), (0, 0, 0, 0,−1), (0, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1,−1), (0, 0, 0, 1, 0), (0, 0, 0, 1, 1) },
{ (0, 0, 1,−1,−1), (0, 0, 1,−1, 0), (0, 0, 1,−1, 1), (0, 0, 1, 0,−1), (0, 0, 1, 0, 0), (0, 0, 1, 0, 1), (0, 0, 1, 1,−1), (0, 0, 1, 1, 0), (0, 0, 1, 1, 1) },
{ (0, 1,−1,−1,−1), (0, 1,−1,−1, 0), (0, 1,−1,−1, 1), (0, 1,−1, 0,−1), (0, 1,−1, 0, 0), (0, 1,−1, 0, 1), (0, 1,−1, 1,−1), (0, 1,−1, 1, 0), (0, 1,−1, 1, 1) },
{ (0, 1, 0,−1,−1), (0, 1, 0,−1, 0), (0, 1, 0,−1, 1), (0, 1, 0, 0,−1), (0, 1, 0, 0, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1,−1), (0, 1, 0, 1, 0), (0, 1, 0, 1,−1) },
{ (0, 1, 1,−1,−1), (0, 1, 1,−1, 0), (0, 1, 1,−1, 1), (0, 1, 1, 0,−1), (0, 1, 1, 0, 0), (0, 1, 1, 0, 1), (0, 1, 1, 1,−1), (0, 1, 1, 1, 0), (0, 1, 1, 1, 1) },
{ (1,−1,−1,−1,−1), (1,−1,−1,−1, 0), (1,−1,−1,−1, 1), (1,−1,−1, 0,−1), (1,−1,−1, 0, 0), (1,−1,−1, 0, 1), (1,−1,−1, 1,−1), (1,−1,−1, 1, 0), (1,−1,−1, 1, 1) },
{ (1,−1, 0,−1,−1), (1,−1, 0,−1, 0), (1,−1, 0,−1, 1), (1,−1, 0, 0,−1), (1,−1, 0, 0, 0), (1,−1, 0, 0, 1), (1,−1, 0, 1,−1), (1,−1, 0, 1, 0), (1,−1, 0, 1, 1) },
{ (1,−1, 1,−1,−1), (1,−1, 1,−1, 0), (1,−1, 1,−1, 1), (1,−1, 1, 0,−1), (1,−1, 1, 0, 0), (1,−1, 1, 0, 1), (1,−1, 1, 1,−1), (1,−1, 1, 1, 0), (1,−1, 1, 1, 1) },
{ (1, 0,−1,−1,−1), (1, 0,−1,−1, 0), (1, 0,−1,−1, 1), (1, 0,−1, 0,−1), (1, 0,−1, 0, 0), (1, 0,−1, 0, 1), (1, 0,−1, 1,−1), (1, 0,−1, 1, 0), (1, 0,−1, 1, 1) },
{ (1, 0, 0,−1,−1), (1, 0, 0,−1, 0), (1, 0, 0,−1, 1), (1, 0, 0, 0,−1), (1, 0, 0, 0, 0), (1, 0, 0, 0, 1), (1, 0, 0, 1,−1), (1, 0, 0, 1, 0), (1, 0, 0, 1, 1) },
{ (1, 0, 1,−1,−1), (1, 0, 1,−1, 0), (1, 0, 1,−1, 1), (1, 0, 1, 0,−1), (1, 0, 1, 0, 0), (1, 0, 1, 0, 1), (1, 0, 1, 1,−1), (1, 0, 1, 1, 0), (1, 0, 1, 1, 1) },
{ (1, 1,−1,−1,−1), (1, 1,−1,−1, 0), (1, 1,−1,−1, 1), (1, 1,−1, 0,−1), (1, 1,−1, 0, 0), (1, 1,−1, 0, 1), (1, 1,−1, 1,−1), (1, 1,−1, 1, 0), (1, 1,−1, 1, 1) },
{ (1, 1, 0,−1,−1), (1, 1, 0,−1, 0), (1, 1, 0,−1, 1), (1, 1, 0, 0,−1), (1, 1, 0, 0, 0), (1, 1, 0, 0, 1), (1, 1, 0, 1,−1), (1, 1, 0, 1, 0), (1, 1, 0, 1,−1) },
{ (1, 1, 1,−1,−1), (1, 1, 1,−1, 0), (1, 1, 1,−1, 1), (1, 1, 1, 0,−1), (1, 1, 1, 0, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1,−1), (1, 1, 1, 1, 0), (1, 1, 1, 1, 1) }

}

The partition of Rt5 defined by E = is

{
[(0, 0, 0, 0, 0)]E

, [(0, 0, 0, 0, 1)]E

, [(0, 0, 0, 1, 1)]E

, [(0, 0, 1, 1, 1)]E

, [(0, 1, 1, 1, 1)]E

, [(1, 1, 1, 1, 1)]E

}

How many elements are in each part of the partition?

CC BY-NC-SA 2.0 Version August 29, 2024 (20)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1. Select all and only the partitions of {1, 2, 3, 4, 5} from the sets below.

(a) {1, 2, 3, 4, 5}
(b) {{1, 2, 3, 4, 5}}
(c) {{1}, {2}, {3}, {4}, {5}}
(d) {{1}, {2, 3}, {4}}
(e) {{∅, 1, 2}, {3, 4, 5}}

2.

Select all and only the correct statements about an equivalence relation E on a set U :

(a) E ∈ U × U

(b) E = U × U

(c) E ⊆ U × U

(d) ∀x ∈ U ([x]E ∈ U)

(e) ∀x ∈ U ([x]E ⊆ U)

(f) ∀x ∈ U ([x]E ∈ P(U))

(g) ∀x ∈ U ([x]E ⊆ P(U))

CC BY-NC-SA 2.0 Version August 29, 2024 (21)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday December 1

Scenario: Good morning! You’re a user experience engineer at Netflix. A product goal is to design
customized home pages for groups of users who have similar interests. Your manager tasks you with
designing an algorithm for producing a clustering of users based on their movie interests, so that customized
homepages can be engineered for each group.

Conventions for today: We will use U = {r1, r2, · · · , rt} to refer to an arbitrary set of user ratings (we’ll
pick some specific examples to explore) that are a subset of Rt5. We will be interested in creating partitions
C1, · · · , Cm of U . We’ll assume that each user represented by an element of U has a unique ratings tuple.

Your idea: equivalence relations! You offer your manager three great options:

Eid = {((x1, x2, x3, x4, x5), (x1, x2, x3, x4, x5)) | (x1, x2, x3, x4, x5) ∈ Rt5}

Describe how each homepage should be designed . . .

Eproj = {((x1, x2, x3, x4, x5), (y1, y2, y3, y4, y5)) ∈ Rt5 ×Rt5 | (x1 = y1) ∧ (x2 = y2) ∧ (x3 = y3)}

Describe how each homepage should be designed . . .

Ecirc = {(u, v) ∈ Rt5 ×Rt5 | d(((0, 0, 0, 0, 0) , u)) = d(((0, 0, 0, 0, 0), v))}

Describe how each homepage should be designed . . .

CC BY-NC-SA 2.0 Version August 29, 2024 (22)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Scenario: Good morning! You’re a user experience engineer at Netflix. A product goal is to design
customized home pages for groups of users who have similar interests. You task your team with designing
an algorithm for producing a clustering of users based on their movie interests. Your team implements two
algorithms that produce different clusterings. How do you decide which one to use? What feedback do you
give the team in order to help them improve? Clearly, you will need to use math.

Your idea: find a way to score clusterings (partitions)

Definition: For a cluster of ratings C = {r1, r2, · · · , rn} ⊆ U , the diameter of the cluster is defined by:

diameter(C) = max
1≤i,j≤n

(d((ri, rj)))

Consider x = (1, 0, 1, 0, 1), y = (1, 1, 1, 0, 1), z = (−1,−1, 0, 0, 0), w = (0, 0, 0, 1, 0).

What is diameter({x, y, z})? diameter({x, y})? diameter({x, z, w})?

diameter works on single clusters. One way to aggregate across a clustering C1, · · · , Cm is
∑m

k=1 diameter(Ck)

Is this a good score?

How can we express the idea of many elements within a small area? Key idea: “give credit” to small
diameter clusters with many elements.

Definition: For a cluster of ratings C = {r1, r2, · · · , rn} ⊆ U , the density of the cluster is defined by:

n

1 + diameter(C)

CC BY-NC-SA 2.0 Version August 29, 2024 (23)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Can you use density to decide whether the partition given by the equivalence classes of Eproj or Ecirc for
this task?

CC BY-NC-SA 2.0 Version August 29, 2024 (24)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Looking forward

Tips for future classes from the CSE 20 TAs and tutors

• In class

– Go to class

– Show up to class early because sometimes seats get taken/ the classroom gets full and then you
have to sit on the floor

– There’s usually a space for skateboards/longboards/eboards to go at the front or rear of the
lecture hall

– If you have a flask water bottle please ensure that its secured during a lecture and it cannot fall
- putting on the floor often leads to it falling since people sometimes cross your seats.

– Take notes - it’s much faster and more effective to note-take in class than watch recordings after,
particularly if you do so longhand

– Resist the urge to sit in the back. You will be able to focus much better sitting near the front,
where there are fewer screens in front of you to distract from the lecture content

– If you bring your laptop to class to take notes / access class materials, sit towards the back of
the room to minimize distractions for people sitting behind you!

– On zoom it’s easy to just type a question out in chat, it might be a little more awkward to do
so in person, but it is definitely worth it. Don’t feel like you should already know what’s being
covered

– Always check you have your iclicker2 on you. Just keep it in your backpack permanently. That
way you can never forget it.

– Don’t be afraid to talk to the people next to you during group discussions. Odds are they’re as
nervous as you are, and you can all benefit from sharing your thoughts and understanding of the
material

– Certain classes will podcast the lectures, just like Zoom archives lecture recordings, at pod-
cast.ucsd.edu

– If they aren’t podcasted, and you want to record lectures, ask your professor for consent first

• Office hours, tutor hours, and the CSE building

– Office hours are a good place to hang out and get work done while being able to ask questions
as they come up

– Office hour attendance is typically much busier in person (and confined to the space in the room)

– Get to know the CSE building: CSE B260, basement labs, office hours rooms

– Know how to get in to the building after-hours

• Libraries and on-campus resources

– Look up what library floors are for what, how to book rooms: East wing of Geisel is open 24/7
(they might ask to see an ID if you stay late), East Wing of Geisel has chess boards and jigsaw
puzzles, study pods on the 8th floor, free computers/wifi

2iclickers are used in many classes to encourage active participation in class. They’re remotes that allow you to respond to
multiple choice questions and the instructor can show a histogram of responses in real time.

CC BY-NC-SA 2.0 Version August 29, 2024 (25)

https://creativecommons.org/licenses/by-nc-sa/2.0/

– Know Biomed exists and is usually less crowded

– Most libraries allow you to borrow whiteboards and markers (also laptops, tablets, microphones,
and other cool stuff) for 24 hours

– Take advantage of Dine with a prof / Coffee with a prof program. It’s legit free food / coffee
once per quarter.

– When planning out your daily schedule, think about where classes are, how much time will they
take, are their places to eat nearby and how you can schedule social time with friends to nearby
areas

– Take into account the distances between classes if they are back to back

• Final exams

– What are 8am finals? Basically in-person exams are different

– Don’t forget your university card during exams

– Blue books for exams (what they are, where to get them)

– Seating assignments for exams and go early to make sure you’re in the right place (check the
exits to make sure you’re reading it the right way)

– Know where your exam is being held (find it on a map at least a day beforehand). Finals are
often in strange places that take a while to find

CSE department course numbering system

Lower division

• CSE 12, Basic Data Structures and Object-Oriented Programming

• CSE 15L (2 units), Software Tools and Technique Laboratory

• CSE 20 or Math 15A, Introduction to Discrete Mathematics

• CSE 21 Mathematics for Algorithms and Systems

• CSE 30, Computer Organization & Systems Programming

Upper division

• Advanced Data Structures and Programming: CSE 100

• Theory and Algorithms: CSE 101, CSE 105

• Software Engineering: CSE 110, CSE 112

• Systems/Networks: CSE 120 or CSE 123 or CSE 124

• Programming Languages /Databases: CSE 130 or CSE 132A

• Security/Cryptography: CSE 107 or CSE 127

• AI / Machine Learning/ Vision/ Graphics: CSE 150A or CSE 151A or CSE 151B or CSE 152A or
CSE 158 or CSE 167

• Hardware / Architecture: CSE 140/ CSE 140L Components and Design Techniques for Digital Sys-
tems Architecture, CSE 141 / CSE 141L Introduction to Computer Architecture and CSE 141L
Project in Computer Architecture (2 units), CSE 142 / CSE 142L Comp Arch Software Perspective

CC BY-NC-SA 2.0 Version August 29, 2024 (26)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Assume there are five movies in the database, so that each user’s ratings can be represented as a
5-tuple. We call Rt5 the set of all ratings 5-tuples. Consider the binary relation on the set of all
5-tuples where each component of the 5-tuple is an element of the collection {−1, 0, 1}

G1 = {(u, v) | the ratings of users u and v agree about the first movie in the database}

G2 = {(u, v) | the ratings of users u and v agree about at least two movies}

(a) True or False: The relation G1 holds of u = (1, 1, 1, 1, 1) and v = (−1,−1,−1,−1,−1)

(b) True or False: The relation G2 holds of u = (1, 0, 1, 0,−1) and v = (−1, 0, 1,−1,−1)

(c) True or False: G1 is reflexive; namely, ∀u ((u, u) ∈ G1)

(d) True or False: G1 is symmetric; namely, ∀u ∀v ((u, v) ∈ G1 → (v, u) ∈ G1)

(e) True or False: G1 is transitive; namely, ∀u ∀v ∀w(((u, v) ∈ G1 ∧ (v, w) ∈ G1) → (u,w) ∈ G1)

(f) True or False: G2 is reflexive; namely, ∀u ((u, u) ∈ G2)

(g) True or False: G2 is symmetric; namely, ∀u ∀v ((u, v) ∈ G2 → (v, u) ∈ G2)

(h) True or False: G2 is transitive; namely, ∀u ∀v ∀w(((u, v) ∈ G2 ∧ (v, w) ∈ G2) → (u,w) ∈ G2)

2.

Recall that in a movie recommendation system, each user’s ratings of movies is represented as a n-
tuple (with the positive integer n being the number of movies in the database), and each component
of the n-tuple is an element of the collection {−1, 0, 1}.
We call Rt5 the set of all ratings 5-tuples.

Define d : Rt5 ×Rt5 → N by

d(((x1, x2, x3, x4, x5), (y1, y2, y3, y4, y5))) =
5∑

i=1

|xi − yi|

For a cluster of ratings C = {r1, r2, · · · , rn} ⊆ U , the diameter of the cluster is defined by:

diameter(C) = max
1≤i,j≤n

(d((ri, rj)))

(a) Calculate diameter({(−1,−1,−1,−1, 1), (0, 0, 0, 0, 0), (1, 1, 1, 1, 1)})
(b) What’s the greatest (possible) diameter of a collection that has exactly two (distinct) ratings

5-tuples?

(c) What’s the least (possible) diameter of a collection that has exactly two (distinct) ratings 5-
tuples?

CC BY-NC-SA 2.0 Version August 29, 2024 (27)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday December 3

Convert (2A)16 to

• binary (base)

• decimal (base)

• octal (base)

• ternary (base)

CC BY-NC-SA 2.0 Version August 29, 2024 (28)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The bases of RNA strands are elements of the set B = {A, C, G, U}. The set of RNA strands S is defined
(recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

Each of the sets below is described using set builder notation. Rewrite them using the roster method.

• {s ∈ S | the leftmost base in s is the same as the rightmost base in s and s has length 3}

• {s ∈ S | there are twice as many As as Cs in s and s has length 1}

Certain sequences of bases serve important biological functions in translating RNA to proteins. The follow-
ing recursive definition gives a special set of RNA strands: The set of RNA strands Ŝ is defined (recursively)
by

Basis step: AUG ∈ Ŝ

Recursive step: If s ∈ Ŝ and x ∈ R, then sx ∈ Ŝ

where R = {UUU, CUC, AUC, AUG, GUU, CCU, GCU, UGG, GGA}.

Each of the sets below is described using set builder notation. Rewrite them using the roster method.

• {s ∈ Ŝ | s has length less than or equal to 5}

• {s ∈ S | there are twice as many Cs as As in s and s has length 6}

CC BY-NC-SA 2.0 Version August 29, 2024 (29)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Let W = P({1, 2, 3, 4, 5}). Consider the statement

∀A ∈ W ∀B ∈ W ∀C ∈ W ((A ∩B = A ∩ C) → (B = C))

Translate the statement to English. Negate the statement and translate this negation to English. Decide
whether the original statement or its negation is true and justify your decision.

CC BY-NC-SA 2.0 Version August 29, 2024 (30)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The set of linked lists of natural numbers L is defined by

Basis step: [] ∈ L

Recursive step: If l ∈ L and n ∈ N, then (n, l) ∈ L

The function length : L → N that computes the length of a list is

Basis step: length([]) = 0

Recursive step: If l ∈ L and n ∈ N, then length((n, l)) = 1 + length(l)

Prove or disprove: the function length is onto.

Prove or disprove: the function length is one-to-one.

CC BY-NC-SA 2.0 Version August 29, 2024 (31)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose A and B are sets and A ⊆ B:

True or False? If A is infinite then B is finite.

True or False? If A is countable then B is countable.

True or False? If B is infinite then A is finite.

True or False? If B is uncountable then A is countable.

CC BY-NC-SA 2.0 Version August 29, 2024 (32)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Compute the last digit of
(42)2021

Extra Describe the pattern that helps you perform this computation and prove it using mathematical
induction.

CC BY-NC-SA 2.0 Version August 29, 2024 (33)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.
Please complete the CAPE and TA evaluations. Once you have done so complete the custom feedback
form for this quarter: https://forms.gle/pbYWSRDP2znkciM46

Then, (we’re using the honor system here), write out the statement “I have completed the end of
quarter evaluations” and you’ll receive credit for this question.

CC BY-NC-SA 2.0 Version August 29, 2024 (34)

https://forms.gle/pbYWSRDP2znkciM46
https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday October 4

Find and fix any and all mistakes with the following:

(a) (1)2 = (1)8

(b) (142)10 = (142)16

(c) (20)10 = (10100)2

(d) (35)8 = (1D)16

Recall the definition of base expansion we discussed:

Definition For b an integer greater than 1 and n a positive integer, the base b expansion of n is

(ak−1 · · · a1a0)b

where k is a positive integer, a0, a1, . . . , ak−1 are nonnegative integers less than b, ak−1 ̸= 0, and

n =
k−1∑
i=0

aib
i

Notice: The base b expansion of a positive integer n is a string over the alphabet {x ∈ N | x < b} whose
leftmost character is nonzero.

Base b Collection of possible coefficients in base b expansion of a positive integer

Binary (b = 2) {0, 1}

Ternary (b = 3) {0, 1, 2}

Octal (b = 8) {0, 1, 2, 3, 4, 5, 6, 7}

Decimal (b = 10) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Hexadecimal (b = 16) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}
letter coefficient symbols represent numerical values (A)16 = (10)10

(B)16 = (11)10 (C)16 = (12)10 (D)16 = (13)10 (E)16 = (14)10 (F)16 = (15)10

We write an algorithm for converting from base b1 expansion to base b2 expansion:

CC BY-NC-SA 2.0 Version August 29, 2024 (35)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition For b an integer greater than 1, w a positive integer, and n a nonnegative integer ,
the base b fixed-width w expansion of n is

(aw−1 · · · a1a0)b,w

where a0, a1, . . . , aw−1 are nonnegative integers less than b and

n =
w−1∑
i=0

aib
i

Decimal Binary Binary fixed-width 10 Binary fixed-width 7 Binary fixed-width 4
b = 10 b = 2 b = 2, w = 10 b = 2, w = 7 b = 2, w = 4

(20)10

(a) (b) (c) (d)

Definition For b an integer greater than 1, w a positive integer, w′ a positive integer, and x a real number
the base b fixed-width expansion of x with integer part width w and fractional part width w′

is (aw−1 · · · a1a0.c1 · · · cw′)b,w,w′ where a0, a1, . . . , aw−1, c1, . . . , cw′ are nonnegative integers less than b and

x ≥
w−1∑
i=0

aib
i +

w′∑
j=1

cjb
−j and x <

w−1∑
i=0

aib
i +

w′∑
j=1

cjb
−j + b−w′

3.75 in fixed-width binary,
integer part width 2,
fractional part width 8

0.1 in fixed-width binary,
integer part width 2,
fractional part width 8

Note: Java uses floating point, not fixed width representation, but similar rounding errors appear in both.

CC BY-NC-SA 2.0 Version August 29, 2024 (36)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 2 Monday

1. Recall the definitions from class for number representations for base b expansion of n, base b
fixed-width w expansion of n, and base b fixed-width expansion of x with integer part
width w and fractional part width w′.

For example, the base 2 (binary) expansion of 4 is (100)2 and the base 2 (binary) fixed-width
8 expansion of 4 is (00000100)2,8 and the base 2 (binary) fixed-width expansion of 4 with
integer part width 3 and fractional part width 2 of 4 is (100.00)2,3,2

Compute the listed expansions. Enter your number using the notation for base expansions with paren-
theses but without subscripts. For example, if your answer were (100)2,3 you would type (100)2,3

into Gradescope.

(a) Give the binary (base 2) expansion of the number whose octal (base 8) expansion is

(371)8

(b) Give the decimal (base 10) expansion of the number whose octal (base 8) expansion is

(371)8

(c) Give the octal (base 8) fixed-width 3 expansion of (9)10?

(d) Give the ternary (base 3) fixed-width 8 expansion of (9)10?

(e) Give the hexadecimal (base 16) fixed-width 6 expansion of (16711935)10?
3

(f) Give the hexadecimal (base 16) fixed-width 4 expansion of

(1011 1010 1001 0000)2

Note: the spaces between each group of 4 bits above are for your convenience only. How might
they help your calculations?

(g) Give the binary fixed width expansion of 0.125 with integer part width 2 and fractional part
width 4.

(h) Give the binary fixed width expansion of 1 with integer part width 2 and fractional part width
3.

2. Select all and only the correct choices below.

(a) Suppose you were told that the positive integer n1 has the property that n1 div 2 = 0. Which
of the following can you conclude?

i. n1 has a binary (base 2) expansion

ii. n1 has a ternary (base 3) expansion

iii. n1 has a hexadecimal (base 16) expansion

iv. n1 has a base 2 fixed-width 1 expansion

v. n1 has a base 2 fixed-width 20 expansion

(b) Suppose you were told that the positive integer n2 has the property that n2 mod 4 = 0. Which
of the following can you conclude?

3This matches a frequent debugging task – sometimes a program will show a number formatted as a base 10 integer that
is much better understood with another representation.

CC BY-NC-SA 2.0 Version August 29, 2024 (37)

https://creativecommons.org/licenses/by-nc-sa/2.0/

i. the leftmost symbol in the binary (base 2) expansion of n2 is 1

ii. the leftmost symbol in the base 4 expansion of n2 is 1

iii. the rightmost symbol in the base 4 expansion of n2 is 0

iv. the rightmost symbol in the octal (base 8) expansion of n2 is 0

CC BY-NC-SA 2.0 Version August 29, 2024 (38)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday October 6

base b expansion of n base b fixed-width w expansion of n

For b an integer greater than 1 and n a positive inte-
ger, the base b expansion of n is (ak−1 · · · a1a0)b
where k is a positive integer, a0, a1, . . . , ak−1 are
nonnegative integers less than b, ak−1 ̸= 0, and
n = ak−1b

k−1 + · · ·+ a1b+ a0

For b an integer greater than 1, w a positive integer,
and n a nonnegative integer with n < bw, the base b
fixed-width w expansion of n is (aw−1 · · · a1a0)b,w
where a0, a1, . . . , aw−1 are nonnegative integers less
than b and n = aw−1b

w−1 + · · ·+ a1b+ a0

Representing negative integers in binary: Fix a positive integer width for the representation w, w > 1.

To represent a positive integer n To represent a negative integer −n

S
ig
n
-m

ag
n
it
u
d
e [0aw−2 · · · a0]s,w, where n = (aw−2 · · · a0)2,w−1 [1aw−2 · · · a0]s,w , where n = (aw−2 · · · a0)2,w−1

Example n = 17, w = 7: Example −n = −17, w = 7:

2s
co
m
p
le
m
en
t [0aw−2 · · · a0]2c,w, where n = (aw−2 · · · a0)2,w−1 [1aw−2 · · · a0]2c,w, where 2w−1−n = (aw−2 · · · a0)2,w−1

Example n = 17, w = 7: Example −n = −17, w = 7:

E
xt
ra

ex
am

pl
e:

1s
co
m
p
le
m
en
t [0aw−2 · · · a0]1c,w, where n = (aw−2 · · · a0)2,w−1 [1āw−2 · · · ā0]1c,w, where n = (aw−2 · · · a0)2,w−1 and

we define 0̄ = 1 and 1̄ = 0.

Example n = 17, w = 7: Example −n = −17, w = 7:

CC BY-NC-SA 2.0 Version August 29, 2024 (39)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For positive integer n, to represent −n in 2s complement with width w,

• Calculate 2w−1 − n, convert result to binary fixed-width w − 1, pad with leading 1, or

• Express −n as a sum of powers of 2, where the leftmost 2w−1 is negative weight, or

• Convert n to binary fixed-width w, flip bits, add 1 (ignore overflow)

Challenge: use definitions to explain why each of these approaches works.

Representing 0:

So far, we have representations for positive and negative integers. What about 0?

To represent a non-negative integer n To represent a non-positive integer −n

S
ig
n
-m

ag
n
it
u
d
e [0aw−2 · · · a0]s,w, where n = (aw−2 · · · a0)2,w−1 [1aw−2 · · · a0]s,w , where n = (aw−2 · · · a0)2,w−1

Example n = 0, w = 7: Example −n = 0, w = 7:

(a) (b)

2s
co
m
p
le
m
en
t [0aw−2 · · · a0]2c,w, where n = (aw−2 · · · a0)2,w−1 [1aw−2 · · · a0]2c,w, where 2w−1−n = (aw−2 · · · a0)2,w−1

Example n = 0, w = 7: Example −n = 0, w = 7:

(c) (d)

CC BY-NC-SA 2.0 Version August 29, 2024 (40)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fixed-width addition: adding one bit at time, using the usual column-by-column and carry arithmetic,
and dropping the carry from the leftmost column so the result is the same width as the summands. Does
this give the right value for the sum?

(1 1 0 1 0 0)2,6

+(0 0 0 1 0 1)2,6

[1 1 0 1 0 0]s,6

+[0 0 0 1 0 1]s,6
[1 1 0 1 0 0]2c,6

+[0 0 0 1 0 1]2c,6

CC BY-NC-SA 2.0 Version August 29, 2024 (41)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 2 Wednesday

1. Recall the definitions of signed integer representations from class: sign-magnitude and 2s complement.

(a) Give the 2s complement width 6 representation of the number represented in binary fixed-width
5 representation as (00101)2,5.

(b) Give the 2s complement width 6 representation of the number represented in binary fixed-width
5 representation as (10101)2,5.

(c) Give the 2s complement width 4 representation of the number represented in sign-magnitude
width 4 as [1111]s,4.

(d) Give the sign magnitude width 4 representation of the number represented in 2s complement
width 4 as [1111]2c,4.

(e) Give the sign magnitude width 6 representation of the number represented in sign magnitude
width 4 as [1111]s,4.

(f) Give the 2s complement width 6 representation of the number represented in 2s complement
width 4 as [1111]2c,4.

2. Recall the definitions of signed integer representations from class: sign-magnitude and 2s complement.

(a) In binary fixed-width addition (adding one bit at time, using the usual column-by-column and
carry arithmetic, and ignoring the carry from the leftmost column), we get:

1110 first summand

+0100 second summand

0010 result

Select all and only the true statements below:

i. When interpreting each of the summands and the result in binary fixed-width 4, the result
represents the actual value of the sum of the summands.

ii. When interpreting each of the summands and the sum in sign-magnitude width 4, the result
represents the actual value of the sum of the summands.

iii. When interpreting each of the summands and the sum in 2s complement width 4, the result
represents the actual value of the sum of the summands.

(b) In binary fixed-width addition (adding one bit at time, using the usual column-by-column and
carry arithmetic, and ignoring the carry from the leftmost column), we get:

0110 first summand

+0111 second summand

1101 result

Select all and only the true statements below:

i. When interpreting each of the summands and the result in binary fixed-width 4, the result
represents the actual value of the sum of the summands.

ii. When interpreting each of the summands and the sum in sign-magnitude width 4, the result
represents the actual value of the sum of the summands.

iii. When interpreting each of the summands and the sum in 2s complement width 4, the result
represents the actual value of the sum of the summands.

CC BY-NC-SA 2.0 Version August 29, 2024 (42)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday October 8

In a combinatorial circuit (also known as a logic circuit), we have logic gates connected by wires.
The inputs to the circuits are the values set on the input wires: possible values are 0 (low) or 1 (high). The
values flow along the wires from left to right. A wire may be split into two or more wires, indicated with a
filled-in circle (representing solder). Values stay the same along a wire. When one or more wires flow into a
gate, the output value of that gate is computed from the input values based on the gate’s definition table.
Outputs of gates may become inputs to other gates.

Inputs Output
x y x AND y
1 1 1
1 0 0
0 1 0
0 0 0

Inputs Output
x y x XOR y
1 1 0
1 0 1
0 1 1
0 0 0

Input Output
x NOT x
1 0
0 1

Example digital circuit:

Output when x = 1, y = 0, z = 0, w = 1 is
Output when x = 1, y = 1, z = 1, w = 1 is
Output when x = 0, y = 0, z = 0, w = 1 is

Draw a logic circuit with inputs x and y whose output is always 0. Can you use exactly 1 gate?

CC BY-NC-SA 2.0 Version August 29, 2024 (43)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fixed-width addition: adding one bit at time, using the usual column-by-column and carry arithmetic,
and dropping the carry from the leftmost column so the result is the same width as the summands. In
many cases, this gives representation of the correct value for the sum when we interpret the summands in
fixed-width binary or in 2s complement.

For single column:

Input Output
x0 y0 c0 s0
1 1
1 0
0 1
0 0

CC BY-NC-SA 2.0 Version August 29, 2024 (44)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Draw a logic circuit that implements binary addition of two numbers that are each represented in fixed-width
binary:

• Inputs x0, y0, x1, y1 represent (x1x0)2,2 and (y1y0)2,2

• Outputs z0, z1, z2 represent (z2z1z0)2,3 = (x1x0)2,2 + (y1y0)2,2 (may require up to width 3)

First approach: half-adder for each column, then combine carry from right column with sum of left column

Write expressions for the circuit output values in terms of input values:

z0 =

z1 =

z2 =

Second approach: for middle column, first add carry from right column to x1, then add result to y1

Write expressions for the circuit output values in terms of input values:

z0 =

z1 =

z2 =

Extra example Describe how to generalize this addition circuit for larger width inputs.

CC BY-NC-SA 2.0 Version August 29, 2024 (45)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 2 Friday

1. (a) Consider the logic circuit

Calculate the value of the output of this circuit (y1) for each of the following settings(s) of input
values.

i. x1 = 1, x2 = 1

ii. x1 = 1, x2 = 0

iii. x1 = 0, x2 = 1

iv. x1 = 0, x2 = 0

(b) Consider the logic circuit

For which of the following settings(s) of input values is the output y1 = 0, y2 = 1? (Select all
and only those that apply.)

i. x1 = 0, x2 = 0, x3 = 0, and x4 = 0

ii. x1 = 1, x2 = 1, x3 = 1, and x4 = 1

iii. x1 = 1, x2 = 0, x3 = 0, and x4 = 1

iv. x1 = 0, x2 = 0, x3 = 1, and x4 = 1

2. Recall this circuit from class:

Which of the following is true about all possible input values x, y, z, w? (Select all and only choices
that are true for all values.)

(a) The output out is set to 1 exactly when x is 0, and it is set to 0 otherwise.

(b) The output out is set to 1 exactly when (xyzw)2,4 < 8, and it is set to 0 otherwise.

(c) The output out is set to 1 exactly when (wzyx)2,4 is an even integer, and it is set to 0 otherwise.

CC BY-NC-SA 2.0 Version August 29, 2024 (46)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday October 11

Logical operators aka propositional connectives

Conjunction AND ∧ \land 2 inputs Evaluates to T exactly when both inputs are T
Exclusive or XOR ⊕ \oplus 2 inputs Evaluates to T exactly when exactly one of inputs is T
Disjunction OR ∨ \lor 2 inputs Evaluates to T exactly when at least one of inputs is T
Negation NOT ¬ \lnot 1 input Evaluates to T exactly when its input is F

Truth tables: Input-output tables where we use T for 1 and F for 0.

Input Output
Conjunction Exclusive or Disjunction

p q p ∧ q p⊕ q p ∨ q
T T T F T
T F F T T
F T F T T
F F F F F

Input Output
Negation

p ¬p
T F
F T

Input Output
p q r (p ∧ q)⊕ ((p⊕ q) ∧ r) (p ∧ q) ∨ ((p⊕ q) ∧ r)
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

CC BY-NC-SA 2.0 Version August 29, 2024 (47)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a truth table, how do we find an expression using the input variables and logical operators that has
the output values specified in this table?

Application: design a circuit given a desired input-output relationship.

Input Output
p q mystery1 mystery2
T T T F
T F T F
F T F F
F F T T

Expressions that have output mystery1 are

Expressions that have output mystery2 are

Definition An expression built of variables and logical operators is in disjunctive normal form (DNF)
means that it is an OR of ANDs of variables and their negations.

Definition An expression built of variables and logical operators is in conjunctive normal form (CNF)
means that it is an AND of ORs of variables and their negations.

Extra example: An expression that has output ? is:

Input Output
p q r ?
T T T T
T T F T
T F T F
T F F T
F T T F
F T F F
F F T T
F F F F

CC BY-NC-SA 2.0 Version August 29, 2024 (48)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 3 Monday

1. (a) Consider the logic circuit

For which of the following settings(s) of input values is the output y1 = 0? (Select all and only
those that apply.)

i. x1 = 0, x2 = 0, x3 = 0, and x4 = 0

ii. x1 = 1, x2 = 1, x3 = 1, and x4 = 1

iii. x1 = 1, x2 = 0, x3 = 0, and x4 = 1

iv. x1 = 0, x2 = 0, x3 = 1, and x4 = 1

(b) Consider the logic circuits

For which of the following settings(s) of input values do the outputs of these circuits have the
same value, i.e. y1 = z1? (Select all and only those that apply.)

i. x1 = 1, x2 = 1

ii. x1 = 1, x2 = 0

iii. x1 = 0, x2 = 1

iv. x1 = 0, x2 = 0

2. For each of the following compound propositions, determine if it is in DNF, CNF, both, or neither.

(a) (x ∨ y ∨ z) ∧ (x ∧ ¬y ∧ z)

(b) ¬(x ∧ y ∧ z) ∧ ¬(¬x ∧ y ∧ ¬z)

CC BY-NC-SA 2.0 Version August 29, 2024 (49)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday October 13

Proposition: Declarative sentence that is true or false (not both).

Propositional variable: Variable that represents a proposition.

Compound proposition: New proposition formed from existing propositions (potentially) using logical
operators. Note: A propositional variable is one example of a compound proposition.

Truth table: Table with one row for each of the possible combinations of truth values of the input and an
additional column that shows the truth value of the result of the operation corresponding to a particular
row.

Logical equivalence : Two compound propositions are logically equivalent means that they have the
same truth values for all settings of truth values to their propositional variables.

Tautology: A compound proposition that evaluates to true for all settings of truth values to its proposi-
tional variables; it is abbreviated T .

Contradiction: A compound proposition that evaluates to false for all settings of truth values to its
propositional variables; it is abbreviated F .

Contingency: A compound proposition that is neither a tautology nor a contradiction.

Label each of the following as a tautology, contradiction, or contingency.

p ∧ p

p⊕ p

p ∨ p

p ∨ ¬p

p ∧ ¬p

Extra Example: Which of the compound propositions in the table below are logically equivalent?

Input Output
p q ¬(p ∧ ¬q) ¬(¬p ∨ ¬q) (¬p ∨ q) (¬q ∨ ¬p) (p ∧ q)
T T
T F
F T
F F

CC BY-NC-SA 2.0 Version August 29, 2024 (50)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Input Output
Conjunction Exclusive or Disjunction Conditional Biconditional

p q p ∧ q p⊕ q p ∨ q p → q p ↔ q
T T T F T T T
T F F T T F F
F T F T T T F
F F F F F T T

“p and q” “p xor q” “p or q” “if p then q” “p if and only if q”

The only way to make the conditional statement p → q false is to

The hypothesis of p → q is The antecedent of p → q is

The conclusion of p → q is The consequent of p → q is

The converse of p → q is

The inverse of p → q is

The contrapositive of p → q is

We can use a recursive definition to describe all compound propositions that use propositional variables
from a specified collection. Here’s the definition for all compound propositions whose propositional variables
are in {p, q}.

Basis Step: p and q are each a compound proposition
Recursive Step: If x is a compound proposition then so is (¬x) and if

x and y are both compound propositions then so is each of
(x ∧ y), (x⊕ y), (x ∨ y), (x → y), (x ↔ y)

Order of operations (Precedence) for logical operators:

Negation, then conjunction / disjunction, then conditional / biconditionals.

Example: ¬p ∨ ¬q means (¬p) ∨ (¬q).

CC BY-NC-SA 2.0 Version August 29, 2024 (51)

https://creativecommons.org/licenses/by-nc-sa/2.0/

(Some) logical equivalences

Can replace p and q with any compound proposition

¬(¬p) ≡ p Double negation

p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p Commutativity Ordering of terms

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) Associativity Grouping of terms

p ∧ F ≡ F p ∨ T ≡ T p ∧ T ≡ p p ∨ F ≡ p Domination aka short circuit evaluation

¬(p ∧ q) ≡ ¬p ∨ ¬q ¬(p ∨ q) ≡ ¬p ∧ ¬q DeMorgan’s Laws

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p Contrapositive

¬(p → q) ≡ p ∧ ¬q

¬(p ↔ q) ≡ p⊕ q

p ↔ q ≡ q ↔ p

Extra examples:

p ↔ q is not logically equivalent to p ∧ q because

p → q is not logically equivalent to q → p because

CC BY-NC-SA 2.0 Version August 29, 2024 (52)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 3 Wednesday

1. For each of the following propositions, indicate exactly one of:

• There is no assignment of truth values to its variables that makes it true,

• There is exactly one assignment of truth values to its variables that makes it true, or

• There are exactly two assignments of truth values to its variables that make it true, or

• There are exactly three assignments of truth values to its variables that make it true, or

• All assignments of truth values to its variables make it true.

(a) x ∧ y ∧ (x ∨ y)

(b) ¬x ∧ y ∧ (x ∨ y)

(c) x ∧ ¬y ∧ (x ∧ y)

(d) ¬x ∧ (y ∨ ¬y)
(e) x ∧ (y ∨ ¬x)

For each of the following propositions, indicate exactly one of:

2. • There is no assignment of truth values to its variables that makes it true,

• There is exactly one assignment of truth values to its variables that makes it true, or

• There are exactly two assignments of truth values to its variables that make it true, or

• There are exactly three assignments of truth values to its variables that make it true, or

• All assignments of truth values to its variables make it true.

(a) (p ↔ q)⊕ (p ∧ q)

(b) (p → q) ∨ (q → p)

(c) (p → q) ∧ (q → p)

(d) ¬(p → q)

CC BY-NC-SA 2.0 Version August 29, 2024 (53)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday October 15

Common ways to express logical operators in English:

Negation ¬p can be said in English as

• Not p.

• It’s not the case that p.

• p is false.

Conjunction p ∧ q can be said in English as

• p and q.

• Both p and q are true.

• p but q.

Exclusive or p⊕ q can be said in English as

• p or q, but not both.

• Exactly one of p and q is true.

Disjunction p ∨ q can be said in English as

• p or q, or both.

• p or q (inclusive).

• At least one of p and q is true.

Conditional p → q can be said in English as

• if p, then q.

• p is sufficient for q.

• q when p.

• q whenever p.

• p implies q.

• q follows from p.

• p is sufficient for q.

• q is necessary for p.

• p only if q.

Biconditional

• p if and only if q.

• p iff q.

• If p then q, and conversely.

• p is necessary and sufficient for q.

CC BY-NC-SA 2.0 Version August 29, 2024 (54)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Translation: Express each of the following sentences as compound propositions, using the given proposi-
tions.

“A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago”

w is “the warranty is good”

b is “you bought the computer less than a year ago”

“Whenever the message was sent from an unknown
system, it is scanned for viruses.”

s is “The message is scanned for viruses”

u is “The message was sent from an unknown system”

“I will complete my to-do list only if I put a reminder
in my calendar”

d is “I will complete my to-do list”

c is “I put a reminder in my calendar”

CC BY-NC-SA 2.0 Version August 29, 2024 (55)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A collection of compound propositions is called consistent if there is an assignment of truth
values to the propositional variables that makes each of the compound propositions true.

Consistency:

Whenever the system software is being upgraded, users cannot access the file system. If users
can access the file system, then they can save new files. If users cannot save new files, then the
system software is not being upgraded.

1. Translate to symbolic compound propositions

2. Look for some truth assignment to the propositional variables for which all the compound propositions
output T

CC BY-NC-SA 2.0 Version August 29, 2024 (56)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 3 Friday

1. Express each of the following sentences as compound propositions, using the given propositions.

(a) “If you try to run Zoom while your computer is running many applications, the video is likely to
be choppy and laggy.” t is “you run Zoom while your computer is running many applications”,
c is “the video is likely to be choppy”, g is “the video is likely to be laggy”

i. t → (c ∧ g)

ii. (c ∧ g) → t

iii. (c ∧ g) ↔ t

iv. t⊕ (c ∧ g)

(b) “To connect wirelessly on campus without logging in you need to use the UCSD-Guest network.”
c is “connect wirelessly on campus”, g is “logging in”, and u is “use UCSD-Guest network”.

i. c ∧ ¬g ∧ u

ii. (c ∧ ¬g) ∨ u

iii. (c ∧ ¬g)⊕ u

iv. (c ∧ ¬g) → u

v. u → (c ∧ ¬g)
vi. u ↔ (c ∧ ¬g)

For each of the following system specifications, identify the compound propositions that give their
translations to logic and then determine if the translated collection of compound propositions is
consistent.

2. (a) Specification: If the computer is out of memory, then network connectivity is unreliable. No
disk errors can occur when the computer is out of memory. Disk errors only occur when network
connectivity is unreliable.

Translation: M = “the computer is out of memory”; N = “network connectivity is unreliable”;
D = “disk errors can occur”.

i.

¬M → N

¬D → M

D → N

ii.

M → ¬N
¬D ∧M

N → D

iii.

M → N

M → ¬D
¬N → ¬D

CC BY-NC-SA 2.0 Version August 29, 2024 (57)

https://creativecommons.org/licenses/by-nc-sa/2.0/

(b) Specification: Whether you think you can, or you think you can’t - you’re right. 4

Translation: T = “you think you can”; C = “you can”.

i.

T → C

¬T → ¬C

ii.

T ∧ C

¬T ∧ ¬C

iii.

T → ¬T
C → ¬C

(c) Specification: A secure password must be private and complicated. If a password is complicated
then it will be hard to remember. People write down hard-to-remember passwords. If a password
is written down, it’s not private. The password is secure.

Translation: S = “the password is secure”; P = “the password is private”; C = “the password is
complicated”; H = “the password is hard to remember”; W = “the password is written down”.

i.

¬(P ∧ C) → ¬S
C → H

W ∧H

W → ¬P
S

ii.

(P ∧ C) → S

C → H

W → H

W → P

S

iii.

S → (P ∧ C)

C → H

H → W

W → ¬P
S

4Henry Ford

CC BY-NC-SA 2.0 Version August 29, 2024 (58)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday October 18

Real-life representations are often prone to corruption. Biological codes, like RNA, may mutate naturally5

and during measurement; cosmic radiation and other ambient noise can flip bits in computer storage6. One
way to recover from corrupted data is to introduce or exploit redundancy.

Consider the following algorithm to introduce redundancy in a string of 0s and 1s.

Create redundancy by repeating each bit three times
1 procedure redun3(ak−1 · · · a0 : a nonempty b i t s t r i n g)
2 for i := 0 to k − 1
3 c3i := ai
4 c3i+1 := ai
5 c3i+2 := ai
6 return c3k−1 · · · c0

Decode sequence of bits using majority rule on consecutive three bit sequences
1 procedure decode3(c3k−1 · · · c0 : a nonempty b i t s t r i n g whose l ength i s an i n t e g e r mu l t ip l e o f 3)
2 for i := 0 to k − 1
3 i f exac t l y two or three o f c3i, c3i+1, c3i+2 are s e t to 1
4 ai := 1
5 else
6 ai := 0
7 return ak−1 · · · a0

Give a recursive definition of the set of outputs of the redun3 procedure, Out,

Consider the message m = 0001 so that the sender calculates redun3(m) = redun3(0001) = 000000000111.

Introduce errors into the message so that the signal received by the receiver is but the
receiver is still able to decode the original message.

Challenge: what is the biggest number of errors you can introduce?

Building a circuit for lines 3-6 in decode procedure: given three input bits, we need to determine whether
the majority is a 0 or a 1.

c3i c3i+1 c3i+2 ai
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Circuit

5Mutations of specific RNA codons have been linked to many disorders and cancers.
6This RadioLab podcast episode goes into more detail on bit flips: https://www.wnycstudios.org/story/bit-flip

CC BY-NC-SA 2.0 Version August 29, 2024 (59)

https://www.wnycstudios.org/story/bit-flip
https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: The Cartesian product of the sets A and B, A × B, is the set of all ordered pairs (a, b),
where a ∈ A and b ∈ B. That is: A × B = {(a, b) | (a ∈ A) ∧ (b ∈ B)}. The Cartesian product of the
sets A1, A2, . . . , An, denoted by A1 × A2 × · · · × An, is the set of ordered n-tuples (a1, a2, ..., an), where ai
belongs to Ai for i = 1, 2, . . . , n. That is,

A1 × A2 × · · · × An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n}

Recall that S is defined as the set of all RNA strands, nonempty strings made of the bases in B = {A, U, G, C}.
We define the functions

mutation : S × Z+ ×B → S insertion : S × Z+ ×B → S

deletion : {s ∈ S | rnalen(s) > 1} × Z+ → S with rules

1 procedure mutation(b1 · · · bn : a RNA strand , k : a positive integer , b : an element of B)
2 for i := 1 to n
3 i f i = k
4 ci := b
5 else
6 ci := bi
7 return c1 · · · cn {The return value is a RNA strand made of the ci values}

1 procedure insertion(b1 · · · bn : a RNA strand , k : a positive integer , b : an element of B)
2 i f k > n
3 for i := 1 to n
4 ci := bi
5 cn+1 := b
6 else
7 for i := 1 to k − 1
8 ci := bi
9 ck := b

10 for i := k + 1 to n+ 1
11 ci := bi−1

12 return c1 · · · cn+1 {The return value is a RNA strand made of the ci values}

1 procedure deletion(b1 · · · bn : a RNA strand with n > 1 , k : a positive integer)
2 i f k > n
3 m := n
4 for i := 1 to n
5 ci := bi
6 else
7 m := n− 1
8 for i := 1 to k − 1
9 ci := bi

10 for i := k to n− 1
11 ci := bi+1

12 return c1 · · · cm {The return value is a RNA strand made of the ci values}

Trace the pseudocode to find the output of mutation((AUC, 3, G))

Fill in the blanks so that insertion((AUC, ,)) = AUCG

Fill in the blanks so that deletion((,)) = G

CC BY-NC-SA 2.0 Version August 29, 2024 (60)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

In this question, we will consider how to build a logic circuit with inputs x0, y0, x1, y1 and output z
such that z = 1 exactly when (x1x0)2,2 < (y1y0)2,2 and z = 0 exactly when (x1x0)2,2 ≥ (y1y0)2,2.

(a) The first step towards designing this logic circuit is to construct its input-output table. How
many rows does this table have (not including the header row labelling the columns)?

(b) What is the output for the row whose input values are x0 = 0, y0 = 1, x1 = 1, y1 = 0?

(c) What is the output for the row whose input values are x0 = 0, y0 = 1, x1 = 0, y1 = 1?

2.

Recall the procedures redun3 and decode3 from class.

(a) Give the output of redun3(100).

(b) If the output of running redun3 is 000000111000111, what was its input?

(c) Give the output of decode3(100).

(d) How many distinct possible inputs to decode3 give the output 01?

3.

Recall the procedures mutation and insertion and deletion from class.

(a) Trace the pseudocode to find the output of mutation((AUC, 2, U))

(b) Trace the pseudocode to find the output of insertion((AUC, 1, G))

(c) Trace the pseudocode to find the output of deletion((AUC, 1))

CC BY-NC-SA 2.0 Version August 29, 2024 (61)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday October 20

Definition: A predicate is a function from a given set (domain) to {T, F}.

A predicate can be applied, or evaluated at, an element of the domain.

Usually, a predicate describes a property that domain elements may or may not have.

Two predicates over the same domain are equivalent means they evaluate to the same truth values for all
possible assignments of domain elements to the input. In other words, they are equivalent means that they
are equal as functions.

To define a predicate, we must specify its domain and its value at each domain element. The rule assigning
truth values to domain elements can be specified using a formula, English description, in a table (if the
domain is finite), or recursively (if the domain is recursively defined).

Input Output
V (x) N(x) Mystery(x)

x [x]2c,3 > 0 [x]2c,3 < 0
000 F T
001 T T
010 T T
011 T F
100 F F
101 F T
110 F F
111 F T

The domain for each of the predicates V (x), N(x),Mystery(x) is .

Fill in the table of values for the predicate N(x) based on the formula given.

Definition: The truth set of a predicate is the collection of all elements in its domain where the predicate
evaluates to T .

Notice that specifying the domain and the truth set is sufficient for defining a predicate.

The truth set for the predicate V (x) is .

The truth set for the predicate N(x) is .

The truth set for the predicate Mystery(x) is .

CC BY-NC-SA 2.0 Version August 29, 2024 (62)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The universal quantification of predicate P (x) over domain U is the statement “P (x) for all values of x in
the domain U” and is written ∀xP (x) or ∀x ∈ U P (x). When the domain is finite, universal quantification
over the domain is equivalent to iterated conjunction (ands).

The existential quantification of predicate P (x) over domain U is the statement “There exists an element
x in the domain U such that P (x)” and is written ∃xP (x) for ∃x ∈ U P (x). When the domain is finite,
existential quantification over the domain is equivalent to iterated disjunction (ors).

An element for which P (x) = F is called a counterexample of ∀xP (x).

An element for which P (x) = T is called a witness of ∃xP (x).

Statements involving predicates and quantifiers are logically equivalent means they have the same truth
value no matter which predicates (domains and functions) are substituted in.

Quantifier version of De Morgan’s laws: ¬∀xP (x) ≡ ∃x (¬P (x)) ¬∃xQ(x) ≡ ∀x (¬Q(x))

Examples of quantifications using V (x), N(x),Mystery(x):

True or False: ∃x (V (x) ∧N(x))

True or False: ∀x (V (x) → N(x))

True or False: ∃x (N(x) ↔ Mystery(x))

Rewrite ¬∀x (V (x)⊕Mystery(x)) into a logical equivalent statement.

Notice that these are examples where the predicates have finite domain. How would we evaluate quantifi-
cations where the domain may be infinite?

Example predicates on S, the set of RNA strands (an infinite set)

H : S → {T, F} where H(s) = T for all s.

Truth set of H is

FA : S → {T, F} defined recursively by:

Basis step: FA(A) = T , FA(C) = FA(G) = FA(U) = F

Recursive step: If s ∈ S and b ∈ B, then FA(sb) = FA(s).

Example where FA evaluates to T is

Example where FA evaluates to F is

CC BY-NC-SA 2.0 Version August 29, 2024 (63)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall the predicates V (x), N(x), and Mystery(x) on domain {000, 001, 010, 011, 100, 101, 110, 111}
from class. Which of the following is true? (Select all and only that apply.)

(a) (∀x V (x)) ∨ (∀x N(x))

(b) (∃x V (x)) ∧ (∃x N(x)) ∧ (∃x Mystery(x))

(c) ∃x (V (x) ∧N(x) ∧Mystery(x))

(d) ∀x (V (x)⊕N(x))

(e) ∀x (Mystery(x) → V (x))

2.

Consider the following predicates, each of which has as its domain the set of all bitstrings whose
leftmost bit is 1

E(x) is T exactly when (x)2 is even, and is F otherwise

L(x) is T exactly when (x)2 < 3, and is F otherwise

M(x) is T exactly when (x)2 > 256 and is F otherwise.

(a) What is E(110)?

(b) Why is L(00) undefined?

i. Because the domain of L is infinite

ii. Because 00 does not have 1 in the leftmost position

iii. Because 00 has length 2, not length 3

iv. Because (00)2,2 = 0 which is less than 3

(c) Is there a bitstring of width (where width is the number of bits) 6 at which M(x) evaluates to
T?

3.

For this question, we will use the following predicate.

FA with domain S is defined recursively by:

Basis step: FA(A) = T , FA(C) = FA(G) = FA(U) = F

Recursive step: If s ∈ S and b ∈ B, then FA(sb) = FA(s)

Which of the following is true? (Select all and only that apply.)

(a) FA(AA)

(b) FA(AC)

(c) FA(AG)

(d) FA(AU)

CC BY-NC-SA 2.0 Version August 29, 2024 (64)

https://creativecommons.org/licenses/by-nc-sa/2.0/

(e) FA(CA)

(f) FA(CC)

(g) FA(CG)

(h) FA(CU)

CC BY-NC-SA 2.0 Version August 29, 2024 (65)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday October 22

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen : S → Z+

Basis Step: If b ∈ B then rnalen(b) = 1
Recursive Step: If s ∈ S and b ∈ B, then rnalen(sb) = 1 + rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S ×B → N

Basis Step: If b1 ∈ B, b2 ∈ B basecount((b1, b2)) =

{
1 when b1 = b2

0 when b1 ̸= b2

Recursive Step: If s ∈ S, b1 ∈ B, b2 ∈ B basecount((sb1, b2)) =

{
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 ̸= b2

Using functions to define predicates:

L with domain S × Z+ is defined by, for s ∈ S and n ∈ Z+,

L((s, n)) =

{
T if rnalen(s) = n

F otherwise

In other words, L((s, n)) means rnalen(s) = n

BC with domain S ×B × N is defined by, for s ∈ S and b ∈ B and n ∈ N,

BC((s, b, n)) =

{
T if basecount((s, b)) = n

F otherwise

In other words, BC((s, b, n)) means basecount((s, b)) = n

Example where L evaluates to T : Why?

Example where BC evaluates to T : Why?

Example where L evaluates to F : Why?

Example where BC evaluates to F : Why?

CC BY-NC-SA 2.0 Version August 29, 2024 (66)

https://creativecommons.org/licenses/by-nc-sa/2.0/

∃t BC(t) ∃(s, b, n) ∈ S ×B × N (basecount((s, b)) = n)

In English:

Witness that proves this existential quantification is true:

∀t BC(t) ∀(s, b, n) ∈ S ×B × N (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

New predicates from old

1. Define the new predicate with domain S ×B and rule

basecount((s, b)) = 3

Example domain element where predicate is T :

2. Define the new predicate with domain S × N and rule

basecount((s, A)) = n

Example domain element where predicate is T :

3. Define the new predicate with domain S ×B and rule

∃n ∈ N (basecount((s, b)) = n)

Example domain element where predicate is T :

4. Define the new predicate with domain S and rule

∀b ∈ B (basecount((s, b)) = 1)

Example domain element where predicate is T :

Notation: for a predicate P with domain X1 × · · · ×Xn and a n-tuple (x1, . . . , xn) with each xi ∈ X, we
can write P (x1, . . . , xn) to mean P ((x1, . . . , xn)).

CC BY-NC-SA 2.0 Version August 29, 2024 (67)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Nested quantifiers

∀s ∈ S ∀b ∈ B ∀n ∈ N (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

∀n ∈ N ∀s ∈ S ∀b ∈ B (basecount((s, b)) = n)

In English:

Counterexample that proves this universal quantification is false:

Alternating nested quantifiers

∀s ∈ S ∃b ∈ B (basecount((s, b)) = 3)

In English: For each RNA strand there is a base that occurs 3 times in this strand.

Write the negation and use De Morgan’s law to find a logically equivalent version where the negation is
applied only to the BC predicate (not next to a quantifier).

Is the original statement True or False?

∃s ∈ S ∀b ∈ B ∃n ∈ N (basecount((s, b)) = n)

In English: There is an RNA strand so that for each base there is some nonnegative integer that counts
the number of occurrences of that base in this strand.

Write the negation and use De Morgan’s law to find a logically equivalent version where the negation is
applied only to the BC predicate (not next to a quantifier).

Is the original statement True or False?

CC BY-NC-SA 2.0 Version August 29, 2024 (68)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall the predicate L with domain S × Z+ from class, L((s, n)) means rnalen(s) = n. Which of
the following is true? (Select all and only that apply.)

(a) ∃s ∈ S ∃n ∈ Z+ L((s, n))

(b) ∃s ∈ S ∀n ∈ Z+ L((s, n))

(c) ∀n ∈ Z+ ∃s ∈ S L((s, n))

(d) ∀s ∈ S ∃n ∈ Z+ L((s, n))

(e) ∃n ∈ Z+ ∀s ∈ S L((s, n))

2.

Recall the predicate BC with domain S×B×N from class, BC((s, b, n)) means basecount((s, b)) =
n. Match each sentence to its English translation, or select none of the above.

(a) ∀s ∈ S ∃n ∈ N ∀b ∈ B basecount((s, b)) = n

(b) ∀s ∈ S ∀b ∈ B ∃n ∈ N basecount((s, b)) = n

(c) ∀s ∈ S ∀n ∈ N ∃b ∈ B basecount((s, b)) = n

(d) ∀b ∈ B ∀n ∈ N ∃s ∈ S basecount((s, b)) = n

(e) ∀n ∈ N ∀b ∈ B ∃s ∈ S basecount((s, b)) = n

i. For each RNA strand and each possible base, the number of that base in that strand is a
nonnegative integer.

ii. For each RNA strand and each nonnegative integer, there is a base that occurs this many times
in this strand.

iii. Every RNA strand has the same number of each base, and that number is a nonnegative integer.

iv. For every given nonnegative integer, there is a strand where each possible base appears the given
number of times.

v. For every given base and nonnegative integer, there is an RNA strand that has this base occurring
this many times.

Challenge: Express symbolically

There are (at least) two different RNA strands that have the same number of As.

CC BY-NC-SA 2.0 Version August 29, 2024 (69)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday October 25

Proof strategies

We now have propositional and predicate logic that can help us express statements about any domain. We
will develop proof strategies to craft valid argument for proving that such statements are true or disproving
them (by showing they are false). We will practice these strategies with statements about sets and numbers,
both because they are familiar and because they can be used to build cryptographic systems. Then we
will apply proof strategies more broadly to prove statements about data structures and machine learning
applications.

When a predicate P (x) is over a finite domain:

• To show that ∀xP (x) is true: check that P (x) evaluates to T at each domain element by evaluating
over and over.

• To show that ∀xP (x) is false: find one counterexample, a domain element where P (x) evaluates to F .

• To show that ∃xP (x) is true: find one witness, a domain element where P (x) evaluates to T .

• To show that ∃xP (x) is false: check that P (x) evaluates to F at each domain element by evaluating
over and over.

New! Proof of universal by exhaustion: To prove that ∀xP (x) is true when P has a finite domain,
evaluate the predicate at each domain element to confirm that it is always T.

New! Proof by universal generalization: To prove that ∀xP (x) is true, we can take an arbitrary
element e from the domain of quantification and show that P (e) is true, without making any assumptions
about e other than that it comes from the domain.
An arbitrary element of a set or domain is a fixed but unknown element from that set.

CC BY-NC-SA 2.0 Version August 29, 2024 (70)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definitions:

A set is an unordered collection of elements. When A and B are sets, A = B (set equality) means

∀x(x ∈ A ↔ x ∈ B)

When A and B are sets, A ⊆ B (“A is a subset of B”) means

∀x(x ∈ A → x ∈ B)

When A and B are sets, A ⊊ B (“A is a proper subset of B”) means

(A ⊆ B) ∧ (A ̸= B)

New! Proof of conditional by direct proof: To prove that the conditional statement p → q is true,
we can assume p is true and use that assumption to show q is true.

New! Proof of conditional by contrapositive proof: To prove that the implication p → q is true, we
can assume q is false and use that assumption to show p is also false.

New! Proof of disjuction using equivalent conditional: To prove that the disjunction p ∨ q is true,
we can rewrite it equivalently as ¬p → q and then use direct proof or contrapositive proof.

New! Proof by Cases: To prove q, we can work by cases by first describing all possible cases we might
be in and then showing that each one guarantees q. Formally, if we know that p1 ∨ p2 is true, and we can
show that (p1 → q) is true and we can show that (p2 → q), then we can conclude q is true.

New! Proof of conjunctions with subgoals: To show that p∧ q is true, we have two subgoals: subgoal
(1) prove p is true; and, subgoal (2) prove q is true.

To show that p ∧ q is false, it’s enough to prove that ¬p.
To show that p ∧ q is false, it’s enough to prove that ¬q.

To prove that one set is a subset of another, e.g. to show A ⊆ B:

To prove that two sets are equal, e.g. to show A = B:

Example: {43, 7, 9} = {7, 43, 9, 7}

CC BY-NC-SA 2.0 Version August 29, 2024 (71)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Prove or disprove: {A, C, U, G} ⊆ {AA, AC, AU, AG}

Prove or disprove: For some set B, ∅ ∈ B.

Prove or disprove: For every set B, ∅ ∈ B.

Prove or disprove: The empty set is a subset of every set.

CC BY-NC-SA 2.0 Version August 29, 2024 (72)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Prove or disprove: The empty set is a proper subset of every set.

Prove or disprove: {4, 6} ⊆ {n | ∃c ∈ Z(n = 4c)}

Prove or disprove: {4, 6} ⊆ {n mod 10 | ∃c ∈ Z(n = 4c)}

Consider . . . , an arbitrary Assume . . . , we want to show that Which is what was needed, so
the proof is complete □.

or, in other words:

Let . . . be an arbitrary Assume . . . , WTS that . . .QED.

CC BY-NC-SA 2.0 Version August 29, 2024 (73)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Suppose P (x) is a predicate over a domain D.

(a) True or False: To translate the statement “There are at least two elements in D where the
predicate P evaluates to true”, we could write

∃x1 ∈ D ∃x2 ∈ D (P (x1) ∧ P (x2))

(b) True or False: To translate the statement “There are at most two elements in D where the
predicate P evaluates to true”, we could write

∀x1 ∈ D ∀x2 ∈ D ∀x3 ∈ D ((P (x1) ∧ P (x2) ∧ P (x3)) → (x1 = x2 ∨ x2 = x3 ∨ x1 = x3))

2.

For each of the following English statements, select the correct translation, or select None.

Challenge: determine which of the statements are true and which are false.

(a) Every set is a subset of itself.

(b) Every set is an element of itself.

(c) Some set is an element of all sets.

(d) Some set is a subset of all sets.

i. ∀X ∃Y (X ∈ Y)

ii. ∃X ∀Y (X ∈ Y)

iii. ∀X ∃Y (X ⊆ Y)

iv. ∃X ∀Y (X ⊆ Y)

v. ∀X (X ∈ X)

vi. ∀X (X ⊆ X)

3. We want to hear how the term and this class are going for you. Please complete the midquarter
feedback form: https://forms.gle/w3D7ifAWnD5sWwHf9

CC BY-NC-SA 2.0 Version August 29, 2024 (74)

https://forms.gle/w3D7ifAWnD5sWwHf9
https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday October 27

Cartesian product: When A and B are sets,

A×B = {(a, b) | a ∈ A ∧ b ∈ B}

Example: {43, 9} × {9,Z} =

Example: Z× ∅ =

Union: When A and B are sets,
A ∪B = {x | x ∈ A ∨ x ∈ B}

Example: {43, 9} ∪ {9,Z} =

Example: Z ∪ ∅ =

Intersection: When A and B are sets,

A ∩B = {x | x ∈ A ∧ x ∈ B}

Example: {43, 9} ∩ {9,Z} =

Example: Z ∩ ∅ =

Set difference: When A and B are sets,

A−B = {x | x ∈ A ∧ x /∈ B}

Example: {43, 9} − {9,Z} =

Example: Z− ∅ =

Disjoint sets: sets A and B are disjoint means A ∩B = ∅

Example: {43, 9}, {9,Z} are not disjoint

Example: The sets Z and ∅ are disjoint

Power set: When U is a set, P(U) = {X | X ⊆ U}

Example: P({43, 9}) =

Example: P(∅) =

CC BY-NC-SA 2.0 Version August 29, 2024 (75)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Let W = P({1, 2, 3, 4, 5})

Example elements in W are:

Prove or disprove: ∀A ∈ W ∀B ∈ W (A ⊆ B → P(A) ⊆ P(B))

Extra example: Prove or disprove: ∀A ∈ W ∀B ∈ W (P(A) = P(B) → A = B)

Extra example: Prove or disprove: ∀A ∈ W ∀B ∈ W ∀C ∈ W (A ∪B = A ∪ C → B = C)

CC BY-NC-SA 2.0 Version August 29, 2024 (76)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Let W = P({1, 2, 3, 4, 5}). The statement

∀A ∈ W ∀B ∈ W ∀C ∈ W (A ∪B = A ∪ C → B = C)

is false. Which of the following choices for A,B,C could be used to give a counterexample to this
claim? (Select all and only that apply.)

(a) A = {1, 2, 3}, B = {1, 2}, C = {1, 3}
(b) A = {1, 2, 3}, B = {2}, C = {2}
(c) A = {∅, 1, 2, 3}, B = {1, 2}, C = {1, 3}
(d) A = {1, 2, 3}, B = {1, 2}, C = {1, 4}
(e) A = {1, 2}, B = {2, 3}, C = {1, 3}
(f) A = {1, 2}, B = {1, 3}, C = {1, 3}

2.

Let W = P({1, 2, 3, 4, 5}). Consider the statement

∀A ∈ W ∀B ∈ W
(
(P(A) = P(B)) → (A = B)

)
This statement is true. A proof of this statement starts with universal generalization, c onsidering
arbitrary A and B in W . At this point, it remains to prove that (P(A) = P(B)) → (A = B) is true
about these arbitrary elements. There are two ways to proceed:

First approach: By direct proof, in which we assume the hypothesis of the conditional and work
to show that the conclusion follows.

Second approach: By proving the contrapositive version of the conditional instead, in which we
assume the negation of the conclusion and work to show that the negation of hypothesis follows.

(a) First approach, assumption.

(b) First approach, “need to show”.

(c) Second approach, assumption.

(d) Second approach, “need to show”.

Pick an option from below for the assumption and “need to show” in each approach.

(i) ∀X(X ⊆ A ↔ X ⊆ B)

(ii) ∃X(X ⊆ A ↔ X ⊆ B)

(iii) ∀X(X ⊆ A⊕X ⊆ B)

(iv) ∃X(X ⊆ A⊕X ⊆ B)

(v) ∀x(x ∈ A ↔ x ∈ B)

(vi) ∃x(x ∈ A ↔ x ∈ B)

(vii) ∀x(x ∈ A⊕ x ∈ B)

(viii) ∃x(x ∈ A⊕ x ∈ B)

CC BY-NC-SA 2.0 Version August 29, 2024 (77)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday October 29

Facts about numbers

1. Addition and multiplication of real numbers are each commutative and associative.

2. The product of two positive numbers is positive, of two negative numbers is positive, and of a positive
and a negative number is negative.

3. The sum of two integers, the product of two integers, and the difference between two integers are each
integers.

4. For every integer x there is no integer strictly between x and x+ 1,

5. When x, y are positive integers, xy ≥ x and xy ≥ y.

Factoring

Definition: When a and b are integers and a is nonzero, a divides b means there is an integer c such that
b = ac .

Symbolically, F ((a, b)) = and is a predicate over the domain

Other (synonymous) ways to say that F ((a, b)) is true:

a is a factor of b a is a divisor of b b is a multiple of a a|b

When a is a positive integer and b is any integer, a|b exactly when b mod a = 0

When a is a positive integer and b is any integer, a|b exactly b = a · (b div a)

Translate these quantified statements by matching to English statement on right.

∃a ∈ Z̸=0 (F ((a, a)))

∃a ∈ Z̸=0 (¬F ((a, a)))

∀a ∈ Z̸=0 (F ((a, a)))

∀a ∈ Z̸=0 (¬F ((a, a)))

Every nonzero integer is a factor of itself.

No nonzero integer is a factor of itself.

At least one nonzero integer is a factor of itself.

Some nonzero integer is not a factor of itself.

CC BY-NC-SA 2.0 Version August 29, 2024 (78)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: Every nonzero integer is a factor of itself.

Proof:

Prove or Disprove: There is a nonzero integer that does not divide its square.

Prove or Disprove: Every positive factor of a positive integer is less than or equal to it.

CC BY-NC-SA 2.0 Version August 29, 2024 (79)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: Every nonzero integer is a factor of itself and every nonzero integer divides its square.

Definition: an integer n is even means that there is an integer a such that n = 2a; an integer n is
odd means that there is an integer a such that n = 2a + 1. Equivalently, an integer n is even means
n mod 2 = 0; an integer n is odd means n mod 2 = 1. Also, an integer is even if and only if it is not
odd.

Definition: An integer p greater than 1 is called prime means the only positive factors of p are 1 and p.
A positive integer that is greater than 1 and is not prime is called composite.

Extra examples: Use the definition to prove that 1 is not prime, 2 is prime, 3 is prime, 4 is not prime, 5 is
prime, 6 is not prime, and 7 is prime.

True or False: The statement “There are three consecutive positive integers that are prime.”

Hint: These numbers would be of the form p, p+ 1, p+ 2 (where p is a positive integer).

Proof: We need to show

True or False: The statement “There are three consecutive odd positive integers that are prime.”

Hint: These numbers would be of the form p, p+ 2, p+ 4 (where p is an odd positive integer).

Proof: We need to show

CC BY-NC-SA 2.0 Version August 29, 2024 (80)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall the predicate F ((a, b)) = “a is a factor of b” over the domain Z ̸=0 × Z we worked with in
class. Consider the following quantified statements

(i) ∀x ∈ Z (F ((1, x)))

(ii) ∀x ∈ Z̸=0 (F ((x, 1)))

(iii) ∃x ∈ Z (F ((1, x)))

(iv) ∃x ∈ Z̸=0 (F ((x, 1)))

(v) ∀x ∈ Z̸=0 ∃y ∈ Z (F ((x, y)))

(vi) ∃x ∈ Z̸=0 ∀y ∈ Z (F ((x, y)))

(vii) ∀y ∈ Z ∃x ∈ Z̸=0 (F ((x, y)))

(viii) ∃y ∈ Z ∀x ∈ Z̸=0 (F ((x, y)))

(a) Select the statement whose translation is

“The number 1 is a factor of every integer.”

or write NONE if none of (i)-(viii) work.

(b) Select the statement whose translation is

“Every integer has at least one nonzero factor.”

or write NONE if none of (i)-(viii) work.

(c) Select the statement whose translation is

“There is an integer of which all nonzero integers are a factor.”

or write NONE if none of (i)-(viii) work.

(d) For each statement (i)-(viii), determine if it is true or false.

2.

Which of the following formalizes the definition of the predicate Pr(x) over the set of integers, and
evaluates to T exactly when x is prime. (Select all and only correct options.)

(a) ∀a ∈ Z̸=0 ((x > 1 ∧ a > 0) → F ((a, x)))

(b) ¬∃a ∈ Z̸=0 (x > 1 ∧ (a = 1 ∨ a = x) ∧ F ((a, x)))

(c) (x > 1) ∧ ∀a ∈ Z̸=0 ((a > 0 ∧ F ((a, x))) → (a = 1 ∨ a = x))

(d) (x > 1) ∧ ∀a ∈ Z̸=0 ((a > 1 ∧ ¬(a = x)) → ¬F ((a, x)))

CC BY-NC-SA 2.0 Version August 29, 2024 (81)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday November 1

Today’s session is on Zoom, log in with your @ucsd.edu account https://ucsd.zoom.us/j/97431852722 Meet-
ing ID: 974 3185 2722

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen : S → Z+

Basis Step: If b ∈ B then rnalen(b) = 1
Recursive Step: If s ∈ S and b ∈ B, then rnalen(sb) = 1 + rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S ×B → N

Basis Step: If b1 ∈ B, b2 ∈ B basecount((b1, b2)) =

{
1 when b1 = b2

0 when b1 ̸= b2

Recursive Step: If s ∈ S, b1 ∈ B, b2 ∈ B basecount((sb1, b2)) =

{
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 ̸= b2

At this point, we’ve seen the proof strategies

• A counterexample to prove that ∀xP (x) is
false.

• A witness to prove that ∃xP (x) is true.

• Proof of universal by exhaustion to prove
that ∀xP (x) is true when P has a finite domain

• Proof by universal generalization to prove
that ∀xP (x) is true using an arbitrary element
of the domain.

• To prove that ∃xP (x) is false, write the univer-
sal statement that is logically equivalent to its
negation and then prove it true using universal
generalization.

• To prove that p ∧ q is true, have two subgoals:
subgoal (1) prove p is true; and, subgoal (2)
prove q is true. To prove that p∧ q is false, it’s
enough to prove that p is false. To prove that
p∧q is false, it’s enough to prove that q is false.

• Proof of conditional by direct proof

• Proof of conditional by contrapositive proof

• Proof of disjuction using equivalent condi-
tional: To prove that the disjunction p ∨ q is
true, we can rewrite it equivalently as ¬p → q
and then use direct proof or contrapositive
proof.

• Proof by cases.

CC BY-NC-SA 2.0 Version August 29, 2024 (82)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Which proof strategies could be used to prove each of the following statements?

Hint: first translate the statements to English and identify the main logical structure.

∀s ∈ S (rnalen(s) > 0)

∀b ∈ B ∃s ∈ S (basecount((s, b)) > 0)

∀s ∈ S ∃b ∈ B (basecount((s, b)) > 0)

∃s ∈ S (rnalen(s) = basecount((s, A))

∀s ∈ S (rnalen(s) ≥ basecount((s, A)))

CC BY-NC-SA 2.0 Version August 29, 2024 (83)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim ∀s ∈ S (rnalen(s) > 0)

Proof: Let s be an arbitrary RNA strand. By the recursive definition of S, either s ∈ B or there is some
strand s0 and some base b such that s = s0b. We will show that the inequality holds for both cases.

Case: Assume s ∈ B. We need to show rnalen(s) > 0. By the basis step in the definition of rnalen,

rnalen(s) = 1

which is greater than 0, as required.

Case: Assume there is some strand s0 and some base b such that s = s0b. We will show (the
stronger claim) that

∀u ∈ S ∀b ∈ B (rnalen(u) > 0 → rnalen(ub) > 0)

Consider an arbitrary RNA strand u and an arbitrary base b, and assume towards a direct proof,
that

rnalen(u) > 0

We need to show that rnalen(ub) > 0.

rnalen(ub) = 1 + rnalen(u) > 1 + 0 = 1 > 0

as required.

Proof by Structural Induction To prove a universal quantification over a recursively defined set:

Basis Step: Show the statement holds for elements specified in the basis step of the definition.

Recursive Step: Show that if the statement is true for each of the elements used to construct new
elements in the recursive step of the definition, the result holds for these new elements.

CC BY-NC-SA 2.0 Version August 29, 2024 (84)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim ∀s ∈ S (rnalen(s) ≥ basecount((s, A))):

Proof: We proceed by structural induction on the recursively defined set S.

Basis Case: We need to prove that the inequality holds for each element in the basis step of the recursive
definition of S. Need to show

(rnalen(A) ≥ basecount((A, A))) ∧ (rnalen(C) ≥ basecount((C, A)))

∧(rnalen(U) ≥ basecount((U, A))) ∧ (rnalen(G) ≥ basecount((G, A)))

We calculate, using the definitions of rnalen and basecount:

Recursive Case: We will prove that

∀u ∈ S ∀b ∈ B (rnalen(u) ≥ basecount((u, A)) → rnalen(ub) ≥ basecount((ub, A))

Consider arbitrary RNA strand u and arbitrary base b. Assume, as the induction hypothesis, that
rnalen(u) ≥ basecount((u, A)). We need to show that rnalen(ub) ≥ basecount((ub, A)).

Using the recursive step in the definition of the function rnalen:

rnalen(ub) = 1 + rnalen(u)

The recursive step in the definition of the function basecount has two cases. We notice that b = A ∨ b ̸= A

and we proceed by cases.

Case i. Assume b = A.

Using the first case in the recursive step in the definition of the function basecount:

basecount((ub, A)) = 1 + basecount((u, A))

By the induction hypothesis, we know that basecount((u, A)) ≤ rnalen(u) so:

basecount((ub, A)) = 1 + basecount((u, A)) ≤ 1 + rnalen(u) = rnalen(ub)

and, thus, basecount((ub, A)) ≤ rnalen(ub), as required.

Case ii. Assume b ̸= A.

Using the second case in the recursive step in the definition of the function basecount:

basecount((ub, A)) = basecount((u, A))

By the induction hypothesis, we know that basecount((u, A)) ≤ rnalen(u) so:

basecount((ub, A)) = basecount((u, A)) ≤ rnalen(u) < 1 + rnalen(u) = rnalen(ub)

and, thus, basecount((ub, A)) ≤ rnalen(ub), as required.

CC BY-NC-SA 2.0 Version August 29, 2024 (85)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

Recall the definitions of the functions rnalen and basecount from class.

1. Select all and only options that give a witness for the existential quantification

∃s ∈ S (rnalen(s) = basecount((s, U)))

(a) A

(b) UU

(c) CU

(d) (U, 1)

(e) None of the above.

2. Select all and only options that give a counterexample for the universal quantification

∀s ∈ S (rnalen(s) > basecount((s, G)))

(a) U

(b) GG

(c) AG

(d) CUG

(e) None of the above.

3. Select all and only the true statements

(a) ∀s ∈ S ∃b ∈ B (rnalen(s) = basecount((s, b)))

(b) ∃s ∈ S ∀b ∈ B (rnalen(s) = basecount((s, b)))

(c)

∀s1 ∈ S ∀s2 ∈ S ∀b ∈ B
((

rnalen(s1) = basecount((s1, b))

∧ rnalen(s2) = basecount((s2, b)) ∧ rnalen(s1) = rnalen(s2)
)
→ s1 = s2

)
(d) None of the above.

CC BY-NC-SA 2.0 Version August 29, 2024 (86)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday November 3

To organize our proofs, it’s useful to highlight which claims are most important for our overall goals. We
use some terminology to describe different roles statements can have.

Theorem: Statement that can be shown to be true, usually an important one.

Less important theorems can be called proposition, fact, result, claim.

Lemma: A less important theorem that is useful in proving a theorem.

Corollary: A theorem that can be proved directly after another one has been proved, without needing a
lot of extra work.

Invariant: A theorem that describes a property that is true about an algorithm or system no matter what
inputs are used.

Theorem: A robot on an infinite 2-dimensional integer grid starts at (0, 0) and at each step moves to
diagonally adjacent grid point. This robot can / cannot (circle one) reach (1, 0).

Definition The set of positions the robot can visit P is defined by:

Basis Step: (0, 0) ∈ P
Recursive Step: If (x, y) ∈ P , then are also in P

Example elements of P are:

Lemma: ∀(x, y) ∈ P (x+ y is an even integer)

Why are we calling this a lemma?

Proof of theorem using lemma: To show is (1, 0) /∈ P . Rewriting the lemma to explicitly restrict the domain
of the universal, we have ∀(x, y) ((x, y) ∈ P → (x + y is an even integer)). Since the universal is true,
((1, 0) ∈ P → (1+0 is an even integer)) is a true statement. Evaluating the conclusion of this conditional
statement: By definition of long division, since 1 = 0 · 2 + 1 (where 0 ∈ Z and 1 ∈ Z and 0 ≤ 1 < 2 mean
that 0 is the quotient and 1 is the remainder), 1 mod 2 = 1 which is not 0 so the conclusion is false. A
true conditional with a false conclusion must have a false hypothesis. Thus, (1, 0) /∈ P , QED. □

CC BY-NC-SA 2.0 Version August 29, 2024 (87)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Proof of lemma by structural induction:

Basis Step:

Recursive Step: Consider arbitrary (x, y) ∈ P . To show is:

(x+ y is an even integer) → (sum of coordinates of next position is even integer)

Assume as the induction hypothesis, IH that:

CC BY-NC-SA 2.0 Version August 29, 2024 (88)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The set N is recursively defined. Therefore, the function sumPow : N → N which computes, for input i,
the sum of the nonnegative powers of 2 up to and including exponent i is defined recursively by

Basis step: sumPow(0) = 1

Recursive step: If x ∈ N, then sumPow(x+ 1) = sumPow(x) + 2x+1

sumPow(0) =

sumPow(1) =

sumPow(2) =

Fill in the blanks in the following proof of

∀n ∈ N (sumPow(n) = 2n+1 − 1)

Proof: Since N is recursively defined, we proceed by .

Basis case: We need to show that . Evaluating each side: LHS = sumPow(0) =

1 by the basis case in the recursive definition of sumPow; RHS = 20+1 − 1 = 21 − 1 = 2 − 1 = 1. Since
1 = 1, the equality holds.

Recursive case: Consider arbitrary natural number n and assume, as the that

sumPow(n) = 2n+1 − 1. We need to show that . Evaluating each side:

LHS = sumPow(n+ 1)
rec def
= sumPow(n) + 2n+1 IH

= (2n+1 − 1) + 2n+1.

RHS = 2(n+1)+1 − 1
exponent rules

= 2 · 2n+1 − 1 =
(
2n+1 + 2n+1

)
− 1

regrouping
= (2n+1 − 1) + 2n+1

Thus, LHS = RHS. The structural induction is complete and we have proved the universal generalization.
□

Proof by Mathematical Induction
To prove a universal quantification over the set of all integers greater than or equal to some base integer b,

Basis Step: Show the property holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the induction
hypothesis) that the property holds for n, and use this and other facts to prove that the property
holds for n+ 1.

CC BY-NC-SA 2.0 Version August 29, 2024 (89)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall the set P defined by the recursive definition

Basis Step: (0, 0) ∈ P
Recursive Step: If (x, y) ∈ P then (x+ 1, y + 1) ∈ P and (x+ 1, y − 1) ∈ P and

(x− 1, y − 1) ∈ P and (x− 1, y + 1) ∈ P

(a) Select all and only the ordered pairs below that are elements of P

i. (0, 0)

ii. (4, 0)

iii. (1, 1)

iv. (1.5, 2.5)

v. (0,−2)

(b) What is another description of the set P ? (Select all and only the true descriptions.)

i. Z× Z
ii. {(n, n) | n ∈ Z}
iii. {(a, b) ∈ Z× Z | (a+ b) mod 2 = 0}

2.

Select all and only the true statements below about the relationship between structural induction and
mathematical induction.

(a) Both structural induction and mathematical induction are proof strategies that may be useful
when proving universal claims about recursively defined sets.

(b) Mathematical induction is a special case of structural induction, for the case when the domain
of quantification is {n ∈ Z | n ≥ b} for some integer b.

(c) Universal claims about the set of all integers may be proved using structural induction but not
using mathematical induction.

CC BY-NC-SA 2.0 Version August 29, 2024 (90)

https://creativecommons.org/licenses/by-nc-sa/2.0/

3.

Consider the following function definitions

2n : N → N given by 20 = 1 and 2n+1 = 2 · 2n

n! : N → N given by 0! = 1 and (n+ 1)! = (n+ 1)n!

(a) Select all and only true statements below:

i. 20 < 0!

ii. 21 < 1!

iii. 22 < 2!

iv. 23 < 3!

v. 24 < 4!

vi. 25 < 5!

vii. 26 < 6!

viii. 27 < 7!

(b) Fill in the blanks in the following proof.

Claim: For all integers n greater than or equal to 4, 2n < n!

Proof: We proceed by mathematical induction on the set of integers greater than or equal to 4.

Basis step: Using the BLANK 1 ,

24 = 2 · 23 = 2 · 2 · 22 = 2 · 2 · 2 · 21 = 2 · 2 · 2 · 2 · 20 = 2 · 2 · 2 · 2 · 1 = 16

and
4! = 4 · 3! = 4 · 3 · 2! = 4 · 3 · 2 · 1! = 4 · 3 · 2 · 1 · 0! = 4 · 3 · 2 · 1 · 1 = 24

Since 16 < 24, we have proved that 24 < 4! , as required.

Recursive step: Consider an arbitrary integer k that is greater than or equal to 4 and assume
as the BLANK 2 , that 2k < k! . We want to show that 2k+1 < (k + 1)! .

2k+1 = 2 · 2k by BLANK3

< 2 · k! by BLANK4

< k · k! by BLANK5

< (k + 1) · k! by BLANK6

= (k + 1)! by BLANK7

as required.

i. properties of addition, multiplication, and < for real numbers

ii. definitions of the functions 2n and n!

iii. definition of k

iv. induction hypothesis

CC BY-NC-SA 2.0 Version August 29, 2024 (91)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday November 5

Definition The set of linked lists of natural numbers L is defined recursively by

Basis Step: [] ∈ L
Recursive Step: If l ∈ L and n ∈ N, then (n, l) ∈ L

Visually:

Example: the list with two nodes whose first node has 20 and whose second node has 42

Definition: The length of a linked list of natural numbers L, length : L → N is defined by

Basis Step: length([]) = 0
Recursive Step: If l ∈ L and n ∈ N, then length((n, l)) = 1 + length(l)

Definition: The function prepend : L×N → L that adds an element at the front of a linked list is defined
by

Definition The function append : L×N → L that adds an element at the end of a linked list is defined by

Basis Step: If m ∈ N then
Recursive Step: If l ∈ L and n ∈ N and m ∈ N, then

CC BY-NC-SA 2.0 Version August 29, 2024 (92)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: ∀l ∈ L (length(append((l, 100))) > length(l))

Proof: By structural induction on L, we have two cases:

Basis Step

1. To Show length(append(([], 100))) > length([]) Because [] is the only element defined in the basis
step of L, we only need to prove that the property
holds for [].

2. To Show length((100, [])) > length([]) By basis step in definition of append.

3. To Show (1 + length([])) > length([]) By recursive step in definition of length.

4. To Show 1 + 0 > 0 By basis step in definition of length.

5. T By properties of integers

QED Because we got to T only by rewriting To Show
to equivalent statements, using well-defined proof
techniques, and applying definitions.

Recursive Step

Consider an arbitrary: l′ ∈ L, n ∈ N, and we assume as the induction hypothesis that:

length(append((l′, 100))) > length(l′)

Our goal is to show that length(append(((n, l′), 100))) > length((n, l′)) is also true. We start by
working with one side of the candidate inequality:

LHS = length(append(((n, l′), 100)))

= length((n, append((l′, 100)))) by the recursive definition of append

= 1 + length(append((l′, 100))) by the recursive definition of length

> 1 + length(l′) by the induction hypothesis

= length((n, l′)) by the recursive definition of length

= RHS

CC BY-NC-SA 2.0 Version August 29, 2024 (93)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Prove or disprove: ∀n ∈ N ∃l ∈ L (length(l) = n)

CC BY-NC-SA 2.0 Version August 29, 2024 (94)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

Recall the definition of linked lists from class.

Consider this (incomplete) definition:

Definition The function increment : that adds 1 to the data in each node of a linked list is
defined by:

increment : →
Basis Step: increment([]) = []
Recursive Step: If l ∈ L, n ∈ N increment((n, l)) = (1 + n, increment(l))

Consider this (incomplete) definition:

Definition The function sum : L → N that adds together all the data in nodes of the list is defined by:

sum : L → N
Basis Step: sum([]) = 0
Recursive Step: If l ∈ L, n ∈ N sum((n, l)) =

You will compute a sample function application and then fill in the blanks for the domain and codomain
of each of these functions.

1. Based on the definition, what is the result of increment((4, (2, (7, []))))? Write your answer directly
with no spaces.

2. Which of the following describes the domain and codomain of increment?

(a) The domain is L and the codomain is N
(b) The domain is L and the codomain is N× L

(c) The domain is L×N and the codomain is L

(d) The domain is L×N and the codomain is N
(e) The domain is L and the codomain is L

(f) None of the above

3. Assuming we would like sum((5, (6, []))) to evaluate to 11 and sum((3, (1, (8, [])))) to evaluate to 12,
which of the following could be used to fill in the definition of the recursive case of sum?

(a)

{
1 + sum(l) when n ̸= 0

sum(l) when n = 0

(b) 1 + sum(l)

(c) n+ increment(l)

(d) n+ sum(l)

(e) None of the above

CC BY-NC-SA 2.0 Version August 29, 2024 (95)

https://creativecommons.org/licenses/by-nc-sa/2.0/

4. Choose only and all of the following statements that are well-defined; that is, they correctly reflect
the domains and codomains of the functions and quantifiers, and respect the notational conventions
we use in this class. Note that a well-defined statement may be true or false.

(a) ∀l ∈ L (sum(l))

(b) ∃l ∈ L (sum(l) ∧ length(l))

(c) ∀l ∈ L (sum(increment(l)) = 10)

(d) ∃l ∈ L (sum(increment(l)) = 10)

(e) ∀l ∈ L∀n ∈ N ((n× l) ⊆ L)

(f) ∀l1 ∈ L∃l2 ∈ L (increment(sum(l1)) = l2)

(g) ∀l ∈ L (length(increment(l)) = length(l))

5. Choose only and all of the statements in the previous part that are both well-defined and true.

CC BY-NC-SA 2.0 Version August 29, 2024 (96)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday November 8

Visualizing induction

Wikimedia commons

https://creativecommons.org/licenses/by/2.0/legalcode

Proof by Mathematical Induction
To prove a universal quantification over the set of all integers greater than or equal to some base integer b,

Basis Step: Show the property holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the induction
hypothesis) that the property holds for n, and use this and other facts to prove that the property
holds for n+ 1.

Proof by Strong Induction
To prove that a universal quantification over the set of all integers greater than or equal to some base integer
b holds, pick a fixed nonnegative integer j and then:
Basis Step: Show the statement holds for b, b+ 1, . . . , b+ j.
Recursive Step: Consider an arbitrary integer n greater than or equal to b+ j, assume (as the strong

induction hypothesis) that the property holds for each of b, b+1, . . . , n, and use
this and other facts to prove that the property holds for n+ 1.

CC BY-NC-SA 2.0 Version August 29, 2024 (97)

https://creativecommons.org/licenses/by/2.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem: Every positive integer is a sum of (one or more) distinct powers of 2. Binary expansions exist!

Recall the definition for binary expansion:

Definition For n a positive integer, the binary expansion of n is

(ak−1 · · · a1a0)b

where k is a positive integer, a0, a1, . . . , ak−1 are each 0 or 1, ak−1 ̸= 0, and

n =
k−1∑
i=0

aib
i

The idea in the “Least significant first” algorithm for computing binary expansions is that the binary
expansion of half a number becomes part of the binary expansion of the number of itself. We can use this
idea in a proof by strong induction that binary expansions exist for all positive integers n.

Proof by strong induction, with b = 1 and j = 0.

Basis step: WTS property is true about 1.

Recursive step: Consider an arbitrary integer n ≥ 1.

Assume (as the strong induction hypothesis, IH) that the property is true about each of 1, . . . , n.

WTS that the property is true about n+ 1.

Idea: We will apply the IH to (n+ 1) div 2.

Why is this ok?

Why is this helpful?

By the IH, we can write (n+1) div 2 as a sum of powers of 2. In other words, there are values ak−1, . . . , a0

CC BY-NC-SA 2.0 Version August 29, 2024 (98)

https://creativecommons.org/licenses/by-nc-sa/2.0/

such that each ai is 0 or 1, ak−1 = 1, and

k−1∑
i=0

ai2
i = (n+ 1) div 2

Define the collection of coefficients

cj =

{
aj−1 if 1 ≤ j ≤ k

(n+ 1) mod 2 if j = 0

Calculating:

k∑
j=0

cj2
j = c0 +

k∑
j=1

cj2
j = c0 +

k−1∑
i=0

ci+12
i+1 re-indexing the summation

= c0 + 2 ·
k−1∑
i=0

ci+12
i factoring out a 2 from each term in the sum

= c0 + 2 ·
k−1∑
i=0

ai2
i by definition of ci+1

= c0 + 2 ((n+ 1) div 2) by IH

= ((n+ 1) mod 2) + 2 ((n+ 1) div 2) by definition of c0

= n+ 1 by definition of long division

Thus, n+ 1 can be expressed as a sum of powers of 2, as required.

Representing positive integers with primes

Theorem: Every positive integer greater than 1 is a product of (one or more) primes.

Before we prove, let’s try some examples:

20 =

100 =

5 =

Proof by strong induction, with b = 2 and j = 0.

Basis step: WTS property is true about 2.

Since 2 is itself prime, it is already written as a product of (one) prime.

Recursive step: Consider an arbitrary integer n ≥ 2. Assume (as the strong induction hypothesis, IH)
that the property is true about each of 2, . . . , n. WTS that the property is true about n + 1: We want to
show that n+ 1 can be written as a product of primes. Notice that n+ 1 is itself prime or it is composite.

CC BY-NC-SA 2.0 Version August 29, 2024 (99)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Case 1: assume n + 1 is prime and then immediately it is written as a product of (one) prime so we are
done.

Case 2: assume that n + 1 is composite so there are integers x and y where n + 1 = xy and each of them
is between 2 and n (inclusive). Therefore, the induction hypothesis applies to each of x and y so each of
these factors of n+ 1 can be written as a product of primes. Multiplying these products together, we get a
product of primes that gives n+ 1, as required.

Since both cases give the necessary conclusion, the proof by cases for the recursive step is complete.

Sending old-fashioned mail with postage stamps

Suppose we had postage stamps worth 5 cents and 3 cents. Which number of cents can we form using these
stamps? In other words, which postage can we pay?

11?

15?

4?

CanPay(0) ∧ ¬CanPay(1) ∧ ¬CanPay(2)∧
CanPay(3) ∧ ¬CanPay(4) ∧ CanPay(5) ∧ CanPay(6)

¬CanPay(7) ∧ ∀n ∈ Z≥8CanPay(n)

where the predicate CanPay with domain N is

CanPay(n) = ∃x ∈ N∃y ∈ N(5x+ 3y = n)

Proof (idea): First, explicitly give witnesses or general arguments for postages between 0 and 7. To prove
the universal claim, we can use mathematical induction or strong induction.

Approach 1, mathematical induction: if we have stamps that add up to n cents, need to use them (and
others) to give n+ 1 cents. How do we get 1 cent with just 3-cent and 5-cent stamps?

Either take away a 5-cent stamps and add two 3-cent stamps,

or take away three 3-cent stamps and add two 5-cent stamps.

The details of this proof by mathematical induction are making sure we have enough stamps to use one of
these approaches.

Approach 2, strong induction: assuming we know how to make postage for all smaller values (greater than or
equal to 8), when we need to make n+1 cents, add one 3 cent stamp to however we make (n+ 1)− 3 cents.

The details of this proof by strong induction are making sure we stay in the domain of the universal when
applying the induction hypothesis.

CC BY-NC-SA 2.0 Version August 29, 2024 (100)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

In class, we proved the theorem that: Every positive integer is a sum of (one or more) distinct powers
of 2.

What’s wrong with the following attempted proof of this fact?

Attempted proof by mathematical induction, with b = 1.

Basis step: WTS 1 can be written as a sum of (one or more) distinct powers of 2. Since 1 = 20, we
are done.

Recursive step: Consider an arbitrary integer n ≥ 1. By the IH, we can write n as a sum of distinct
powers of 2. Since 1 = 20, it is a power of 2 and we can add it as a term to this sum of powers of 2.
When we do so, the terms sum to n+ 1 and we are done.

(a) The basis step is not sufficient.

(b) The induction hypothesis is not stated correctly.

(c) It’s wrong to say that 1 is a power of 2.

(d) Adding the 20 to the sum of powers doesn’t give the correct value.

(e) Adding the 20 to the sum of powers is problematic for a different reason.

2.

Recall that a prime factorization is a product of primes (potentially with some of the primes occurring
more than once). Select all and only the correct prime factorizations of positive integers.

(a) 2 · 2 · 2 · 2
(b) 3

(c) 3 · 4 · 5
(d) 17 · 21
(e) 2 · 11

CC BY-NC-SA 2.0 Version August 29, 2024 (101)

https://creativecommons.org/licenses/by-nc-sa/2.0/

3. In this question, we’ll consider two possible proofs of the statement

∀n ∈ Z≥8∃x ∈ N∃y ∈ N(5x+ 3y = n)

(a) First approach, using mathematical induction (b = 8).

Basis step: WTS property is true about 8. Consider the witnesses x = 1, y = 1. These are
nonnegative integers and 5 · 1 + 3 · 1 = 8, as required.

Recursive step: Consider an arbitrary n ≥ 8. Assume (as the induction hypothesis, IH) that
there are nonnegative integers x, y such that n = 5x + 3y. WTS that there are nonnegative
integers x′, y′ such that n + 1 = 5x′ + 3y′. We consider two cases, depending on whether any 5
cent stamps are used for n.

Case 1: Assume x ≥ 1 (we assume that at least one 5 cent stamp is used for n). Define x′ = x−1
and y′ = y + 2 (both in N by case assumption).

Calculating:

5x′ + 3y′
by def
= 5(x− 1) + 3(y + 2) = 5x− 5 + 3y + 6

rearranging
= (5x+ 3y)− 5 + 6

IH
= n− 5 + 6 = n+ 1

Case 2: Assume x = 0. Therefore n = 3y, so since n ≥ 8, y ≥ 3. Define x′ = 2 and y′ = y − 3
(both in N by case assumption). Calculating:

5x′ + 3y′
by def
= 5(2) + 3(y − 3) = 10 + 3y − 9

rearranging
= 3y + 10− 9

IH and case
= n+ 10− 9 = n+ 1

Since the goal has been proved from each case, the proof by cases is complete and we have proved
the recursive step. □

Why was the recursive step split into two cases?

i. Because there are two variables x and y that need witnesses.

ii. Because the statement has alternating quantifiers ∀ and ∃
iii. Because the witness values need to be nonnegative and subtraction may lead to negative

values.

iv. Because the domain is all integers greater than or equal to 8.

v. Because there are two steps in the recursive definition of N
(b) Second approach, by strong induction (b = 8 and j = 2)

Basis step: WTS property is true about 8, 9, 10

• Consider the witnesses x = 1, y = 1. These are nonnegative integers and 5 · 1 + 3 · 1 = 8, as
required.

• Consider the witnesses x = 0, y = 3. These are nonnegative integers and 5 · 0 + 3 · 3 = 9, as
required.

• Consider the witnesses x = 2, y = 0. These are nonnegative integers and 5 · 2 + 3 · 0 = 10,
as required.

CC BY-NC-SA 2.0 Version August 29, 2024 (102)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Recursive step: Consider an arbitrary n ≥ 10. Assume, as the strong induction hypothesis,
that the property is true about each of 8, 9, 10, . . . , n. WTS that there are nonnegative integers
x′, y′ such that n+ 1 = 5x′ + 3y′.

Since Blank 1, by the strong induction hypothesis, there are nonnegative integers x, y such that
(n+ 1)− 3 = 5x+ 3y. Choosing Blank 2 works because

5x′ + 3y′ = 5x+ 3y + 3 = (n+ 1)− 3 + 3 = n+ 1.

Choose a true and useful statement to fill in Blank 1.

i. n ≥ 10 and hence (n+ 1)− 3 ≥ 8

ii. n ≥ 8 and hence (n+ 1)− 3 ≥ 8

iii. n ≥ 8 and hence (n+ 1) ≥ 9

Choose the appropriate statement to fill in Blank 2.

i. x′ = x, y′ = y

ii. x′ = x+ 1, y′ = y + 1

iii. x′ = x+ 1, y′ = y

iv. x′ = x, y′ = y + 1

v. x′ = x− 1, y′ = y − 1

vi. x′ = x− 1, y′ = y

vii. x′ = x, y′ = y − 1

CC BY-NC-SA 2.0 Version August 29, 2024 (103)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday November 10

Finding a winning strategy for a game

Consider the following game: two players start with two (equal) piles of jellybeans in front of them. They
take turns removing any positive integer number of jellybeans at a time from one of two piles in front of
them in turns.

The player who removes the last jellybean wins the game.

Which player (if any) has a strategy to guarantee to win the game?

Try out some games, starting with 1 jellybean in each pile, then 2 jellybeans in each pile, then 3 jellybeans
in each pile. Who wins in each game?

Notice that reasoning about the strategy for the 1 jellybean game is easier than about the strategy for the
2 jellybean game.

Formulate a winning strategy by working to transform the game to a simpler one we know we can win.

CC BY-NC-SA 2.0 Version August 29, 2024 (104)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Player 2’s Strategy: Take the same number of jellybeans that Player 1 did, but from the opposite pile.

Why is this a good idea: If Player 2 plays this strategy, at the next turn Player 1 faces a game with the
same setup as the original, just with fewer jellybeans in the two piles. Then Player 2 can keep playing this
strategy to win.

Claim: Player 2’s strategy guarantees they will win the game.

Proof: By strong induction, we will prove that for all positive integers n, Player 2’s strategy guarantees a
win in the game that starts with n jellybeans in each pile.

Basis step: WTS Player 2’s strategy guarantees a win when each pile starts with 1 jellybean.

In this case, Player 1 has to take the jellybean from one of the piles (because they can’t take from both
piles at once). Following the strategy, Player 2 takes the jellybean from the other pile, and wins because
this is the last jellybean.

Recursive step: Let n be a positive integer. As the strong induction hypothesis, assume that Player 2’s
strategy guarantees a win in the games where there are 1, 2, . . . , n many jellybeans in each pile at the start
of the game.

WTS that Player 2’s strategy guarantees a win in the game where there are n+ 1 in the jellybeans in each
pile at the start of the game.

In this game, the first move has Player 1 take some number, call it c (where 1 ≤ c ≤ n + 1), of jellybeans
from one of the piles. Playing according to their strategy, Player 2 then takes the same number of jellybeans
from the other pile.

Notice that (c = n+ 1) ∨ (c ≤ n).

Case 1: Assume c = n+ 1, then in their first move, Player 2 wins because they take all of the second pile,
which includes the last jellybean.

Case 2: Assume c ≤ n. Then after Player 2’s first move, the two piles have an equal number of jellybeans.
The number of jellybeans in each pile is

(n+ 1)− c

and, since 1 ≤ c ≤ n, this number is between 1 and n. Thus, at this stage of the game, the game appears
identical to a new game where the two piles have an equal number of jellybeans between 1 and n. Thus,
the strong induction hypothesis applies, and Player 2’s strategy guarantees they win.

CC BY-NC-SA 2.0 Version August 29, 2024 (105)

https://creativecommons.org/licenses/by-nc-sa/2.0/

New! Proof by Contradiction
To prove that a statement p is true, pick another statement r and once we show that ¬p → (r ∧ ¬r) then
we can conclude that p is true.
Informally The statement we care about can’t possibly be false, so it must be true.

Least and greatest

For a set of numbers X, how do you formalize “there is a greatest X” or “there is a least X”?

Prove or disprove: There is a least prime number.

Prove or disprove: There is a greatest integer.

Approach 1, De Morgan’s and universal generalization:

Approach 2, proof by contradiction:

Extra examples: Prove or disprove that N, Q each have a least and a greatest element.

CC BY-NC-SA 2.0 Version August 29, 2024 (106)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall the game Nim from class.

(a) Why did we use strong induction to prove that Player 2’s strategy guarantees a win?

i. Because there are two players in the game.

ii. Because each turn can involve a player taking some positive number of jellybeans from a
pile, not just one jellybean.

iii. Because the strategy player 2 uses depends on what player 1 does.

iv. Because the set of natural numbers is recursively defined.

(b) If we modify the game so that in each turn, a player could take jellybeans from one or both piles,
which player has a winning strategy?

i. Player 1.

ii. Player 2.

iii. Neither in general, the existence of a winning strategy for the players depends on how many
jellybeans are in each pile to start.

(c) If we modify the game so that in each turn, a player must take exactly one jellybean, which
player has a winning strategy?

i. Player 1.

ii. Player 2.

iii. Neither in general, the existence of a winning strategy for the players depends on how many
jellybeans are in each pile to start.

2.

We will prove that there is no greatest prime number

Proof Assume, towards a BLANK1, that there is a greatest prime number, call it nBIG. In particular,
this means that there are finitely many primes. Let’s label them in order p1, . . . , pn where p1 = 2
and pn = nBIG. Choose r = BLANK2. We proved in class that r is true. It remains to show that
(under our assumption) r is false, because that would complete the contradiction argument. Define
the integer

C = (p1 · · · pn) + 1

This is a positive integer greater than 1. However, we will show that it does not have any prime factors
and thus is not a product of primes. By our assumption, the only prime numbers are p1, . . . , pn. Thus,
to show that C does not have any prime factors means to show that pi is not a factor of C for each
value of i from 1 to n. Towards a universal generalization, let i be an arbitrary between 1 and n
(inclusive). We need to prove that pi is not a factor of C. By definition of C,

C = pi(p1 · · · pi−1pi+1 · · · pn) + 1

so C div pi = p1 · · · pi−1pi+1 · · · pn and C mod pi = 1 (because pi > 1 since it is prime). Since
C mod pi ̸= 0, pi is not a factor of C. Thus C witnesses that the universal claim is false, and we
have proved that r is false.

CC BY-NC-SA 2.0 Version August 29, 2024 (107)

https://creativecommons.org/licenses/by-nc-sa/2.0/

(a) BLANK1

i. universal generalization

ii. proof of existential by witness

iii. direct proof

iv. proof by contrapositive

v. proof by cases

vi. proof by contradiction

(b) BLANK2

i. The least prime number is 2.

ii. There is a greatest prime number.

iii. There is a least prime number.

iv. Every positive integer greater than 1 is a product of primes.

v. Every positive integer has a base expansion.

vi. There is a greatest integer.

vii. There is no greatest integer.

3.

Select all and only the situations in which the given proof strategy would be available.

(a) When might it be appropriate to use induction?

i. To prove that an existential claim over the set of integers is true.

ii. To prove that a universal claim over the real numbers is true.

iii. To prove that a conditional claim is true.

iv. None of the above.

(b) When might it be appropriate to use proof by contradiction?

i. To prove that an existential claim over the set of integers is true.

ii. To prove that a universal claim over the real numbers is true.

iii. To prove that a conditional claim is true.

iv. None of the above.

CC BY-NC-SA 2.0 Version August 29, 2024 (108)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday November 12

Definition: Greatest common divisor Let a and b be integers, not both zero. The largest integer d
such that d is a factor of a and d is a factor of b is called the greatest common divisor of a and b and is
denoted by gcd((a, b)).

Why do we restrict to the situation where a and b are not both zero?

Calculate gcd((10, 15))

Calculate gcd((10, 20))

Claim: For any integers a, b (not both zero), gcd((a, b)) ≥ 1.

Proof: Show that 1 is a common factor of any two integers, so since the gcd is the greatest common factor
it is greater than or equal to any common factor.

Claim: For any positive integers a, b, gcd((a, b)) ≤ a and gcd((a, b)) ≤ b.

Proof Using the definition of gcd and the fact that factors of a positive integer are less than or equal to
that integer.

CC BY-NC-SA 2.0 Version August 29, 2024 (109)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: For any positive integers a, b, if a divides b then gcd((a, b)) = a.

Proof Using previous claim and definition of gcd.

Claim: For any positive integers a, b, c, if there is some integer q such that a = bq + c,

gcd((a, b)) = gcd((b, c))

Proof Prove that any common divisor of a, b divides c and that any common divisor of b, c divides a.

Lemma: For any integers p, q (not both zero), gcd
((

p
gcd((p,q))

, q
gcd((p,q))

))
= 1 . In other words, can

reduce to relatively prime integers by dividing by gcd.

Proof:

Let x be arbitrary positive integer and assume that x is a factor of each of p
gcd((p,q))

and q
gcd((p,q))

. This
gives integers α, β such that

αx =
p

gcd((p, q))
βx =

q

gcd((p, q))

Multiplying both sides by the denominator in the RHS:

αx · gcd((p, q)) = p βx · gcd((p, q)) = q

In other words, x · gcd((p, q)) is a common divisor of p, q. By definition of gcd, this means

x · gcd((p, q)) ≤ gcd((p, q))

and since gcd((p, q)) is positive, this means, x ≤ 1.

CC BY-NC-SA 2.0 Version August 29, 2024 (110)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Sets of numbers

We’ve seen multiple representations of the set of positive integers (using base expansions and using prime
factorization). Now we’re going to expand our attention to other sets of numbers as well.

The set of rational numbers, Q is defined as{
p

q
| p ∈ Z and q ∈ Z and q ̸= 0

}
or, equivalently, {x ∈ R | ∃p ∈ Z∃q ∈ Z+(p = x · q)}

Extra practice: Use the definition of set equality to prove that the definitions above give the same set.

We have the following subset relationships between sets of numbers:

Z+ ⊊ N ⊊ Z ⊊ Q ⊊ R

Which of the proper subset inclusions above can you prove?

Goal: The square root of 2 is not a rational number. In other words: ¬∃x ∈ Q(x2 − 2 = 0)

Attempted proof: The definition of the set of rational numbers is the collection of fractions p/q where p
is an integer and q is a nonzero integer. Looking for a witness p and q, we can write the square root of 2
as the fraction

√
2/1, where 1 is a nonzero integer. Since the numerator is not in the domain, this witness

is not allowed, and we have shown that the square root of 2 is not a fraction of integers (with nonzero
denominator). Thus, the square root of 2 is not rational.

The problem in the above attempted proof is that

Lemma 1: For every two integers a and b, not both zero, with gcd((a, b)) = 1, it is not the case that
both a is even and b is even.

Lemma 2: For every integer x, x is even if and only if x2 is even.

Proof: Towards a proof by contradiction, we will define a statement r such that
√
2 ∈ Q → (r ∧ ¬r).

Assume that
√
2 ∈ Q. Namely, there are positive integers p, q such that

√
2 =

p

q

Let a = p
gcd((p,q))

, b = q
gcd((p,q))

, then

√
2 =

a

b
and gcd((a, b)) = 1

By Lemma 1, a and b are not both even. We define r to be the statement “a is even and b is even”, and we
have proved ¬r.

CC BY-NC-SA 2.0 Version August 29, 2024 (111)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Squaring both sides and clearing denominator: 2b2 = a2.

By definition of even, since b2 is an integer, a2 is even.

By Lemma 2, this guarantees that a is even too. So, by definition of even, there is some integer (call it c),
such that a = 2c.

Plugging into the equation:
2b2 = a2 = (2c)2 = 4c2

and dividing both sides by 2
b2 = 2c2

and since c2 is an integer, b2 is even. By Lemma 2, b is even too. Thus, a is even and b is even and we have
proved r.

In other words, assuming that
√
2 ∈ Q guarantees r ∧ ¬r, which is impossible, so

√
2 /∈ Q. QED

CC BY-NC-SA 2.0 Version August 29, 2024 (112)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

We will consider two ways for calculating the gcd. In each part of the question, you’ll calculate
gcd((306, 120)).

(a) The first approach uses some of the claims we proved in class to get the following algorithm:

Euclidean algorithm for calculating greatest common divisor
1 procedure Euclidean(a : a p o s i t i v e in t ege r , b : a p o s i t i v e i n t e g e r)
2 x := a
3 y := b
4 while y ̸= 0
5 r := x mod y
6 x := y
7 y := r
8 return x {the result of gcd((a, b))}

Tracing this algorithm, lines 2 and 3 initialize the variables

x := 306 y := 120

Entering the while loop, the variable r is initialized to

r := 66

because 306 = 2 · 120 + 66 so 306 mod 120 = 66. Calculate and fill in the updated value of r in
each subsequent iteration of the while loop, and then give the value of gcd((306, 120)).

(b) The second approach uses the representation of positive integers greater than 1 as products of
primes. To calculate gcd((a, b)) we find the prime factorizations of each of a and b, and then
calculate the number that results from multiplying together terms pc where p is a prime that
appears in both prime factorizations of a and b and c is the minimum number of times p appears
in the two factorizations.

Select the prime factorizations for 306 and 120 and express their gcd as a product of powers of
primes.

Possible factorizations:

i. 306 = 2 · 153, 120 = 2 · 60
ii. 306 = 1 · 2 · 3 · 3 · 17, 120 = 1 · 3 · 5 · 8
iii. 306 = 2 · 3 · 3 · 17, 120 = 2 · 2 · 2 · 3 · 5
Possible gcd choices:

i. 2

ii. 2 · 3
iii. 5 · 17
iv. 23 · 32

v. 23 · 32 · 5 · 8 · 17

CC BY-NC-SA 2.0 Version August 29, 2024 (113)

https://creativecommons.org/licenses/by-nc-sa/2.0/

2.

Goals for this question: recognize that we can prove the same statement in different ways. Trace proofs
and justify why they are valid.

Below are two proofs of the same statement: fill in the blanks with the expressions below.

Claimed statement: (a)

Proof 1: Using De Morgan’s law for quantifiers, we can rewrite this statement as a universal
of the negation of the body of the statement. Towards a proof by universal generalization,
let x be an arbitrary element of Z. Then we need to show that

(b)

We proceed by contradiction to show that

(x is odd ∧ x2 is even) → (c)

We assume by direct proof that (x is odd ∧ x2 is even). Then, (x2 is even) follows directly
from this assumption, so by definition of conjunction, we must show that (x2 is not even) to
complete the proof. From the assumption, we have that (x is odd). Applying the definition
of odd, x = 2k + 1 for some k ∈ Z. Then x2 = 4k2 + 4k + 1. We can rewrite the right
hand side to 2(2k2 + 2k) + 1. This shows that x2 is odd by the definition of odd, since
choosing j = 2k2 + 2k gives us j ∈ Z with x2 = 2j + 1. Since a number is either even or
odd and not both, and x2 is odd, then it must not be even. This concludes the proof, as
we have assumed the negation of the original statement and deduced a contradiction from
this assumption.

CC BY-NC-SA 2.0 Version August 29, 2024 (114)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Proof 2:
1. To Show ∀x ∈ Z¬(x is odd ∧ x2 is even) Rewriting statement using De Mor-

gan’s law for quantifiers

2.
Choose arbitrary x ∈ Z
To Show (d)

By (e)

3. To Show x is odd → ¬(x2 is even) Rewrite previous To Show using
logical equivalence

4.
Assume x is odd
To Show ¬(x2 is even)

By (f)

5. To Show x2 is odd Rewrite previous To Show using
definition of even, odd

6.
Use the witness k, an integer,
where x = 2k + 1

By existential definition of x being
odd

7.
Choose the witness
j = 2k2 + 2k, an integer
To Show x2 = 2j + 1

Show this new To Show is true to
prove the existential definition of x2

being odd

8. To Show (2k + 1)2 = 2j + 1 Rewrite previous To Show using
definition of k

9. To Show (2k + 1)2 = 2(2k2 + 2k) + 1 Rewrite previous To Show using
definition of j

10. To Show T By algebra: multiplying out the
LHS; factoring the RHS

QED Because we got to T only by rewrit-
ing To Show to equivalent state-
ments, using valid proof techniques
and definitions.

Consider the following expressions as options to fill in the two proofs above. Give your answer as one
of the numbers below for each blank a-c. You may use some numbers for more than one blank, but
each letter only uses one of the expressions below.

i. ∃x ∈ Z (x is odd ∧ x2 is even)

ii. ¬∃x ∈ Z (x is odd ∧ x2 is even)

iii. ∃x ∈ Z (x is odd ∧ x is even)

iv. ¬∃x ∈ Z (x is odd ∧ x is even)

v. ∃x ∈ Z (x2 is odd ∧ x2 is even)

vi. ¬∃x ∈ Z (x2 is odd ∧ x2 is even)

vii. (x2 is even ∧ x2 is not even)

viii. ¬(x is odd ∧ x2 is even)

ix. (x is odd ∧ x2 is even)

x. (x is odd ∧ x is not odd)

xi. ¬(x is odd ∧ x is not odd)

xii. x2 is even

xiii. x2 is odd

xiv. universal generalization

xv. proof by cases

xvi. direct proof

xvii. proof by contraposition

xviii. proof by contradiction

CC BY-NC-SA 2.0 Version August 29, 2024 (115)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday November 15

We have the following subset relationships between sets of numbers:

Z+ ⊊ N ⊊ Z ⊊ Q ⊊ R

Which of the proper subset inclusions above can you prove?

Definition: A finite set is one whose distinct elements can be counted by a natural number.

Motivating question: when can we say one set is bigger than another?

Which is bigger?

• The set {1, 2, 3} or the set {0, 1, 2, 3}?

• The set {0, π,
√
2} or the set {N,R, ∅}?

• The set N or the set R+?

Which of the sets above are finite? infinite?

Key idea for cardinality: Counting distinct elements is a way of labelling elements with natural numbers.
This is a function! In general, functions let us associate elements of one set with those of another. If the
association is “good”, we get a correspondence between the elements of the subsets which can relate the
sizes of the sets.

Analogy: Musical chairs

People try to sit down when the music stops

Person☼ sits in Chair 1, Person, sits in Chair 2,

Person/ is left standing!

What does this say about the number of chairs and the number of people?

CC BY-NC-SA 2.0 Version August 29, 2024 (116)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Recall that a function is defined by its (1) domain, (2) codomain, and (3) rule assigning each element in
the domain exactly one element in the codomain. The domain and codomain are nonempty sets. The rule
can be depicted as a table, formula, English description, etc.

A function can fail to be well-defined if there is some domain element where the function rule doesn’t give
a unique codomain element. For example, the function rule might lead to more than one potential image,
or to an image outside of the codomain.

Example: fA : R+ → Q with fA(x) = x is not a well-defined function because

Example: fB : Q → Z with fB

(
p
q

)
= p+ q is not a well-defined function because

Example: fC : Z → R with fC(x) =
x
|x| is not a well-defined function because

Definition : A function f : D → C is one-to-one (or injective) means for every a, b in the domain D, if
f(a) = f(b) then a = b.

Formally, f : D → C is one-to-one means .

Informally, a function being one-to-one means “no duplicate images”.

Definition: For nonempty sets A,B, we say that the cardinality of A is no bigger than the cardi-
nality of B, and write |A| ≤ |B|, to mean there is a one-to-one function with domain A and codomain B.

CC BY-NC-SA 2.0 Version August 29, 2024 (117)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Also, we define |∅| ≤ |B| for all sets B.

In the analogy: The function sitter : {Chair1, Chair2} → {Person☼, P erson,, P erson/} given by
sitter(Chair1) = Person☼, sitter(Chair2) = Person,, is one-to-one and witnesses that

|{Chair1, Chair2}| ≤ |{Person☼, P erson,, P erson/}|

Let S2 be the set of RNA strands of length 2, formally S2 = {s ∈ S | rnalen(s) = 2}.

True or False: |{A, U, G, C}| ≤ |S2|

Why?

True or False: |{A, U, G, C} × {A, U, G, C}| ≤ |S2|

Why?

Definition: A function f : D → C is onto (or surjective) means for every b in the codomain, there is an
element a in the domain with f(a) = b.

Formally, f : D → C is onto means .

Informally, a function being onto means “every potential image is an actual image”.

Definition: For nonempty sets A,B, we say that the cardinality of A is no smaller than the car-
dinality of B, and write |A| ≥ |B|, to mean there is an onto function with domain A and codomain B.
Also, we define |A| ≥ |∅| for all sets A.

In the analogy: The function triedToSit : {Person☼, P erson,, P erson/} → {Chair1, Chair2} given by
triedToSit(Person☼) = Chair1, triedToSit(Person,) = Chair2, triedToSit(Person/) = Chair2, is
onto and witnesses that

|{Person☼, P erson,, P erson/}| ≥ |{Chair1, Chair2}|

CC BY-NC-SA 2.0 Version August 29, 2024 (118)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Let S2 be the set of RNA strands of length 2.

True or False: |S2| ≥ |{A, U, G, C}|

Why?

True or False: |S2| ≥ |{A, U, G, C} × {A, U, G, C}|

Why?

Definition : A function f : D → C is a bijection means that it is both one-to-one and onto. The inverse
of a bijection f : D → C is the function g : C → D such that g(b) = a iff f(a) = b.

Cardinality of sets

For nonempty sets A,B we say

|A| ≤ |B| means there is a one-to-one function with domain A, codomain B

|A| ≥ |B| means there is an onto function with domain A, codomain B

|A| = |B| means there is a bijection with domain A, codomain B

For all sets A, we say |A| = |∅|, |∅| = |A| if and only if A = ∅.

Caution: we use familiar symbols to define cardinality, like | | ≤ | | and | | ≥ | | and | | = | |,
but the meaning of these symbols depends on context. We’ve seen that vertical lines can mean absolute
value (for real numbers), divisibility (for integers), and now sizes (for sets).

Now we see that ≤ and ≥ can mean comparing numbers or comparing sizes of sets. When the sets being
compared are finite, the definitions of |A| ≤ |B| agree.

But, properties of numbers cannot be assumed when comparing cardinalities of infinite sets.

In a nutshell: cardinality of sets is defined via functions. This definition agrees with the usual notion of
“size” for finite sets.

CC BY-NC-SA 2.0 Version August 29, 2024 (119)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Select all and only the finite sets below.

(a) X = {a, b, c}
(b) Y = {1, 2, 3, 4, 5}
(c) Z = {10, 20, 30}
(d) ∅
(e) Z
(f) {∅}
(g) {Z}

2.
Consider the following input-output definition tables with X = {a, b, c} and Y = {1, 2, 3, 4, 5} and
Z = {10, 20, 30}

Table 1
Input Output
1 10
2 20
3 30

Table 2
Input Output
a 1
b 4
c 5

Table 3
Input Output
10 a
20 b
30 a

(a) Select all and only the tables that each define a well-defined function whose domain and codomain
is each X, Y , or Z.

(b) Select all and only the tables that each define a well-defined function (with domain X or Y or
Z and with codomain X or Y or Z) and that is one-to-one.

(c) Select all and only the tables that each define a well-defined function (with domain X or Y or
Z and with codomain X or Y or Z) and that is onto.

CC BY-NC-SA 2.0 Version August 29, 2024 (120)

https://creativecommons.org/licenses/by-nc-sa/2.0/

3.

Consider the following functions:

f : Z → N

f(n) =


0 when n = 0

(−2 · n)− 1 when n < 0

2 · n when n > 0

g : Z → N

g(n) =

{
−1 · n when n < 0

n when n ≥ 0

h : N → Z

h(n) =

{
(−2 · n) + 1 when n is even

2 · n when n is odd

q : N → Z

q(n) =

{
−1 · ((n+ 1) div 2) when n is odd

n div 2 when n is even

(a) What is the result of f(−3)?

(b) What is the result of q(f(−4))?

Notice we are looking at function composition here: first apply f and then apply q to the result.

(c) What is the result of f(h(4))?

Notice we are looking at function composition here: first apply h and then apply f to the result.

(d) What is the result of g(−4)?

(e) What is the result of g(4)?

(f) Consider the following statements, and indicate if they are true for each of f , g, h, and q.

i. This function is one-to-one.

ii. This function is onto.

iii. This function is a bijection.

iv. This function could serve as a witness for |Z| ≤ |N|.
v. This function could serve as a witness for |Z| ≥ |N|.
vi. This function could serve as a witness for |N| ≤ |Z|.
vii. This function could serve as a witness for |N| ≥ |Z|.

CC BY-NC-SA 2.0 Version August 29, 2024 (121)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday November 17

Properties of cardinality

∀A (|A| = |A|)
∀A ∀B (|A| = |B| → |B| = |A|)
∀A ∀B ∀C ((|A| = |B| ∧ |B| = |C|) → |A| = |C|)

Extra practice with proofs: Use the definitions of bijections to prove these properties.

Cantor-Schroder-Bernstein Theorem: For all nonempty sets,

|A| = |B| if and only if (|A| ≤ |B| and |B| ≤ |A|) if and only if (|A| ≥ |B| and |B| ≥ |A|)

To prove |A| = |B|, we can do any one of the following

• Prove there exists a bijection f : A → B;
• Prove there exists a bijection f : B → A;
• Prove there exists two functions f1 : A → B, f2 : B → A where each of f1, f2 is one-to-one.
• Prove there exists two functions f1 : A → B, f2 : B → A where each of f1, f2 is onto.

CC BY-NC-SA 2.0 Version August 29, 2024 (122)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A set A is countably infinite means it is the same size as N.

Natural numbers N List: 0 1 2 3 4 5 6 7 8 9 10 . . .

identity : N → N with identity(n) = n

Claim: identity is a bijection. Proof: Ex. Corollary: |N| = |N|

Positive integers Z+ List: 1 2 3 4 5 6 7 8 9 10 11 . . .

positives : N → Z+ with positives(n) = n+ 1

Claim: positives is a bijection. Proof: Ex. Corollary: |N| = |Z+|

Negative integers Z− List: −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11. . .

negatives : N → Z− with negatives(n) = −n− 1

Claim: negatives is a bijection. Corollary: |N| = |Z−|

Proof: We need to show it is a well-defined function that is one-to-one and onto.

• Well-defined?

Consider an arbitrary element of the domain, n ∈ N. We need to show it maps to exactly one element
of Z−.

• One-to-one?

Consider arbitrary elements of the domain a, b ∈ N. We need to show that

(negatives(a) = negatives(b)) → (a = b)

• Onto?

Consider arbitrary element of the codomain b ∈ Z−. We need witness in N that maps to b.

Integers Z List: 0 − 1 1 − 2 2 − 3 3 − 4 4 − 5 5. . .

f : Z → N with f(x) =

{
2x if x ≥ 0

−2x− 1 if x < 0

Claim: f is a bijection. Proof: Ex. Corollary: |Z| = |N|

CC BY-NC-SA 2.0 Version August 29, 2024 (123)

https://creativecommons.org/licenses/by-nc-sa/2.0/

More examples of countably infinite sets

Claim: S is countably infinite

Similarly: The set of all strings over a specific alphabet is countably infinite.

Bijection using alphabetical-ish ordering (first order by length, then alphabetically among strings of same
length) of strands

Claim: L is countably infinite

list : N → L

list(n) = (n, [])
toNum : L → N
toNum([]) = 0

toNum((n, l)) = 2n3toNum(l) for n ∈ N, l ∈ L

Claim: |Z+| = |Q|

One-to-one function from Z+ to Q is f1 : Z → Q with f1(n) = n for all n ∈ N.

f2 : Q → Z× Z

f2(x) =


(0, 1) if x = 0

(p, q) if x = p
q
,

gcd(p, q) = 1, q > 0

f3 : Z× Z → Z+ × Z+

f3((x, y)) =


(2x+ 2, 2y + 2) if x ≥ 0, y ≥ 0

(−2x− 1, 2y + 2) if x < 0, y ≥ 0

(2x+ 2,−2y + 1) if x ≥ 0, y < 0

(−2x− 1,−2y − 1) if x < 0, y < 0

f4 : Z+ × Z+ → Z+

f4((x, y)) = 2x3y for x, y ∈ Z+

CC BY-NC-SA 2.0 Version August 29, 2024 (124)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1. Consider the function f : N → Z given by f(n) =

{
n div 4 if n is even

−((n+ 1) div 4) if n is odd

Select all and only the true statements below.

(a) f is one-to-one

(b) f is onto

(c) f is a bijection

(d) f witnesses that |N| ≤ |Z|
(e) f witnesses that |N| ≥ |Z|
(f) f witnesses that |N| = |Z|
(g) There is a one-to-one function with domain N and codomain Z
(h) There is an onto function with domain N and codomain Z
(i) There is a bijection with domain N and codomain Z
(j) |N| ≤ |Z|
(k) |N| ≥ |Z|
(l) |N| = |Z|

2.

Goals for this question: Reason through multiple nested quantifiers. Fluently use the definition and
properties of the set of rationals.

Recall the definition of the set of rational numbers, Q =
{

p
q
| p ∈ Z and q ∈ Z and q ̸= 0

}
. We define

the set of irrational numbers Q = R−Q = {x ∈ R | x /∈ Q}.

(i) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x+ y = z)

(ii) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x+ z = y)

(iii) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x · y = z)

(iv) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x · z = y)

(v) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x+ y = z)

(vi) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x+ z = y)

(vii) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x · y = z)

(viii) ∀x ∈ Q ∀y ∈ Q ∃z ∈ Q (x · z = y)

(a) Which of the statements above (if any) could be disproved using the counterexample x = 1
2
,

y = 3
4
?

(b) Which of the statements above (if any) could be disproved using the counterexample x =
√
4,

y =
√
3?

(c) Which of the statements above (if any) could be disproved using the counterexample x = 0,
y = 3?

(d) Which of the statements above (if any) could be disproved using the counterexample x =
√
2,

y = 0?

(e) Which of the statements above (if any) could be disproved using the counterexample x =
√
2,

y = −
√
2?

Hint: we proved in class that
√
2 /∈ Q. You may also use the facts that

√
3 /∈ Q and −

√
2 /∈ Q.

Bonus - not to hand in: prove these facts; that is, prove that
√
3 /∈ Q and −

√
2 /∈ Q.

CC BY-NC-SA 2.0 Version August 29, 2024 (125)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday November 19

Cardinality categories

A set A is finite means it is empty or it is the same size as {1, . . . , n} for some n ∈ N.

A set A is countably infinite means it is the same size as N. Notice: all countably infinite sets are the
same size as each other.

A set A is countable means it is either finite or countably infinite.

A set A is uncountable means it is not countable.

Lemmas about countable and uncountable sets

Lemma: If A is a subset of a countable set, then it’s countable.

Lemma: If A is a superset of an uncountable set, then it’s uncountable.

Lemma: If A and B are countable sets, then A ∪B is countable and A ∩B is countable.

Lemma: If A and B are countable sets, then A×B is countable.

Generalize pairing ideas from Z+ × Z+ to Z+

Lemma: If A is a subset of B , to show that |A| = |B|, it’s enough to give one-to-one function from B to
A or an onto function from A to B.

CC BY-NC-SA 2.0 Version August 29, 2024 (126)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Are there always *bigger* sets?

Recall: When U is a set, P(U) = {X | X ⊆ U}

Key idea: For finite sets, the power set of a set has strictly greater size than the set itself. Does this extend
to infinite sets?

Definition: For two sets A,B, we use the notation |A| < |B| to denote (|A| ≤ |B|) ∧ ¬(|A| = |B|).

∅ = {} P(∅) = {∅} |∅| < |P(∅)|
{1} P({1}) = {∅, {1}} |{1}| < |P({1})|
{1, 2} P({1, 2}) = {∅, {1}, {2}, {1, 2}} |{1, 2}| < |P({1, 2})|

N and its power set

Example elements of N

Example elements of P(N)

Claim: |N| ≤ |P(N)|

CC BY-NC-SA 2.0 Version August 29, 2024 (127)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: There is an uncountable set. Example:

Proof: By definition of countable, since is not finite, to show is |N| ≠ |P(N)| .

Rewriting using the definition of cardinality, to show is

Towards a proof by universal generalization, consider an arbitrary function f : N → P(N).

To show: f is not a bijection. It’s enough to show that f is not onto.

Rewriting using the definition of onto, to show:

¬∀B ∈ P(N) ∃a ∈ N (f(a) = B)

. By logical equivalence, we can write this as an existential statement:

In search of a witness, define the following collection of nonnegative integers:

Df = {n ∈ N | n /∈ f(n)}

. By definition of power set, since all elements of Df are in N, Df ∈ P(N). It’s enough to prove the following
Lemma:

Lemma: ∀a ∈ N (f(a) ̸= Df).

Proof of lemma:

By the Lemma, we have proved that f is not onto, and since f was arbitrary, there are no onto functions
from N to P(N). QED

Where does Df come from? The idea is to build a set that would “disagree” with each of the images of
f about some element.

n ∈ N f(n) = Xn Is 0 ∈ Xn? Is 1 ∈ Xn? Is 2 ∈ Xn? Is 3 ∈ Xn? Is 4 ∈ Xn? . . . Is n ∈ Df?
0 f(0) = X0 Y / N Y / N Y / N Y / N Y / N . . . N / Y
1 f(1) = X1 Y / N Y / N Y / N Y / N Y / N . . . N / Y
2 f(2) = X2 Y / N Y / N Y / N Y / N Y / N . . . N / Y
3 f(3) = X3 Y / N Y / N Y / N Y / N Y / N . . . N / Y
4 f(4) = X4 Y / N Y / N Y / N Y / N Y / N . . . N / Y
...

CC BY-NC-SA 2.0 Version August 29, 2024 (128)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Countable vs. uncountable: sets of numbers

Comparing Q and R

Both Q and R have no greatest element.

Both Q and R have no least element.

The quantified statement
∀x∀y(x < y → ∃z(x < z < y))

is true about both Q and R.

Both Q and R are infinite. But, Q is countably infinite whereas R is uncountable.

The set of real numbers

Z ⊊ Q ⊊ R

Order axioms (Rosen Appendix 1):

Reflexivity ∀a ∈ R(a ≤ a)
Antisymmetry ∀a ∈ R ∀b ∈ R ((a ≤ b ∧ b ≤ a) → (a = b))
Transitivity ∀a ∈ R ∀b ∈ R ∀c ∈ R ((a ≤ b ∧ b ≤ c) → (a ≤ c))
Trichotomy ∀a ∈ R ∀b ∈ R ((a = b ∨ b > a ∨ a < b)

Completeness axioms (Rosen Appendix 1):

Least upper bound Every nonempty set of real numbers that is bounded above has a least upper bound
Nested intervals For each sequence of intervals [an, bn] where, for each n, an < an+1 < bn+1 < bn, there

is at least one real number x such that, for all n, an ≤ x ≤ bn.

Each real number r ∈ R is described by a function to give better and better approximations

xr : Z+ → {0, 1} where xr(n) = nth bit in binary expansion of r

r Binary expansion xr

0.1 0.00011001 . . . x0.1(n) =


0 if n > 1 and (n mod 4) = 2

0 if n = 1 or if n > 1 and (n mod 4) = 3

1 if n > 1 and (n mod 4) = 0

1 if n > 1 and (n mod 4) = 1

√
2− 1 = 0.4142135 . . . 0.01101010 . . . Use linear approximations (tangent lines from calculus)

to get algorithm for bounding error of successive oper-
ations. Define x√

2−1(n) to be nth bit in approximation

that has error less than 2−(n+1).

CC BY-NC-SA 2.0 Version August 29, 2024 (129)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: {r ∈ R | 0 ≤ r ∧ r ≤ 1} is uncountable.

Approach 1: Mimic proof that P(Z+) is uncountable.

Proof: By definition of countable, since {r ∈ R | 0 ≤ r ∧ r ≤ 1} is not finite, to show is |N| ̸= |{r ∈
R | 0 ≤ r ∧ r ≤ 1}| .

To show is ∀f : Z+ → {r ∈ R | 0 ≤ r ∧ r ≤ 1} (f is not a bijection) . Towards a proof by universal
generalization, consider an arbitrary function f : Z+ → {r ∈ R | 0 ≤ r ∧ r ≤ 1}. To show: f is not a
bijection. It’s enough to show that f is not onto. Rewriting using the definition of onto, to show:

∃x ∈ {r ∈ R | 0 ≤ r ∧ r ≤ 1} ∀a ∈ N (f(a) ̸= x)

In search of a witness, define the following real number by defining its binary expansion

df = 0.b1b2b3 · · ·

where bi = 1 − bii where bjk is the coefficient of 2−k in the binary expansion of f(j). Since7 df ̸= f(a) for
any positive integer a, f is not onto.

Approach 2: Nested closed interval property

To show f : N → {r ∈ R | 0 ≤ r ∧ r ≤ 1} is not onto. Strategy: Build a sequence of nested closed
intervals that each avoid some f(n). Then the real number that is in all of the intervals can’t be f(n) for
any n. Hence, f is not onto.

Consider the function f : N → {r ∈ R | 0 ≤ r ∧ r ≤ 1} with f(n) = 1+sin(n)
2

n f(n) Interval that avoids f(n)
0 0.5
1 0.920735 . . .
2 0.954649 . . .
3 0.570560 . . .
4 0.121599 . . .
...

Other examples of uncountable sets

• The power set of any countably infinite set is uncountable. For example:

P(N),P(Z+),P(Z)

are each uncountable.

• The closed interval {x ∈ R | 0 ≤ x ≤ 1}, any other nonempty closed interval of real numbers whose
endpoints are unequal, as well as the related intervals that exclude one or both of the endpoints.

• The set of all real numbers R is uncountable and the set of irrational real numbers Q is uncountable.

7There’s a subtle imprecision in this part of the proof as presented, but it can be fixed.

CC BY-NC-SA 2.0 Version August 29, 2024 (130)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

The diagonalization argument constructs, for each function f : N → P(N), a set Df defined as

Df = {x ∈ N | x /∈ f(x)}

which has the property that, for all n ∈ N, f(n) ̸= Df . Consider the following two functions with
domain N and codomain P(N)

f1(x) = {y ∈ N | y mod 3 = x mod 3}

f2(x) = {y ∈ N | (y > 0) ∧ (x mod y ̸= 0)}

Select all and only the true statements below.

(a) 0 ∈ Df1

(b) Df1 is infinite

(c) Df1 is uncountable

(d) 1 ∈ Df2

(e) Df2 is empty

(f) Df2 is countably infinite

2.

Recall the definitions from previous assignments and class: The bases of RNA are elements of the set
B = {A, C, G, U}. The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

For b an integer greater than 1 and n a positive integer, the base b expansion of n is

(ak−1 · · · a1a0)b

where k is a positive integer, a0, a1, . . . , ak−1 are nonnegative integers less than b, ak−1 ̸= 0, and

n = ak−1b
k−1 + · · ·+ a1b+ a0

For b an integer greater than 1, w a positive integer, and n a nonnegative integer with n < bw, the
base b fixed-width w expansion of n is

(aw−1 · · · a1a0)b,w

where a0, a1, . . . , aw−1 are nonnegative integers less than b and

n = aw−1b
w−1 + · · ·+ a1b+ a0

CC BY-NC-SA 2.0 Version August 29, 2024 (131)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For b an integer greater than 1, w a positive integer, w′ a positive integer, and x a real number the
base b fixed-width expansion of x with integer part width w and fractional part width w′

is
(aw−1 · · · a1a0.c1 · · · cw′)b,w,w′

where a0, a1, . . . , aw−1, c1, . . . , cw′ are nonnegative integers less than b and

x ≥ aw−1b
w−1 + · · ·+ a1b+ a0 + c1b

−1 + · · ·+ cw′b−w′

and
x < aw−1b

w−1 + · · ·+ a1b+ a0 + c1b
−1 + · · ·+ (cw′ + 1)b−w′

For each set below, determine if it is empty, nonempty and finite, countably infinite, or uncountable.

Challenge - not to hand in: how would you prove this?

(a) B

(b) S

(c) {x ∈ N | x = (4102)3}
(d) {x ∈ R | x has a binary fixed-width 5 expansion}
(e) {x ∈ R | x = (0.10)(2,1,2)}

CC BY-NC-SA 2.0 Version August 29, 2024 (132)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday November 22

Definition: When A and B are sets, we say any subset of A×B is a binary relation. A relation R can
also be represented as

• A function fTF : A×B → {T, F} where, for a ∈ A and b ∈ B, fTF ((a, b)) =

{
T when (a, b) ∈ R

F when (a, b) /∈ R

• A function fP : A → P(B) where, for a ∈ A, fP(a) = {b ∈ B | (a, b) ∈ R}

When A is a set, we say any subset of A× A is a (binary) relation on A.

For relation R on a set A, we can represent this relation as a graph: a collection of nodes (vertices) and
edges (arrows). The nodes of the graph are the elements of A and there is an edge from a to b exactly when
(a, b) ∈ R.

Example: For A = P(R), we can define the relation EQR on A as

{(X1, X2) ∈ P(R)× P(R) | |X1| = |X2|}

Example: Let R(mod n) be the set of all pairs of integers (a, b) such that (a mod n = b mod n). Then a is
congruent to b mod n means (a, b) ∈ R(mod n). A common notation is to write this as a ≡ b(mod n).

R(mod n) is a relation on the set

Some example elements of R(mod 4) are:

CC BY-NC-SA 2.0 Version August 29, 2024 (133)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A relation R on a set A is called reflexive means (a, a) ∈ R for every element a ∈ A.

Informally, every element is related to itself.

Graphically, there are self-loops (edge from a node back to itself) at every node.

A relation R on a set A is called symmetric means (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A.

Informally, order doesn’t matter for this relation.

Graphically, every edge has a paired “backwards” edge so we might as well drop the arrows and think of
edges as undirected.

A relation R on a set A is called transitive means whenever (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for
all a, b, c ∈ A.

Informally, chains of relations collapse.

Graphically, there’s a shortcut between any endpoints of a chain of edges.

A relationR on a setA is called antisymmetricmeans ∀a ∈ A ∀b ∈ A (((a, b) ∈ R ∧ (b, a) ∈ R) → a = b)

Informally, the relation has directionality.

Graphically, can organize the nodes of the graph so that all non-self loop edges go up.

CC BY-NC-SA 2.0 Version August 29, 2024 (134)

https://creativecommons.org/licenses/by-nc-sa/2.0/

When the domain is {a, b, c, d, e, f, g, h} define a relation that is not reflexive and is not symmetric and
is not transitive.

When the domain is {a, b, c, d, e, f, g, h} define a relation that is not reflexive but is symmetric and is
transitive.

When the domain is {a, b, c, d, e, f, g, h} define a relation that is symmetric and is antisymmetric.

Is the relation EQR reflexive? symmetric? transitive? antisymmetric?

Is the relation R(mod 4) reflexive? symmetric? transitive? antisymmetric?

Is the relation Sub on W = P({1, 2, 3, 4, 5}) given by Sub = {(X, Y) | X ⊆ Y } reflexive? symmetric?
transitive? antisymmetric?

CC BY-NC-SA 2.0 Version August 29, 2024 (135)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A relation is an equivalence relation means it is reflexive, symmetric, and transitive.

A relation is a partial ordering (or partial order) means it is reflexive, antisymmetric, and transitive.

For a partial ordering, its Hasse diagram is a graph whose nodes (vertices) are the elements of the domain
of the binary relation and which are located such that nodes connected to nodes above them by (undirected)
edges indicate that the relation holds between the lower node and the higher node. Moreover, the diagram
omits self-loops and omits edges that are guaranteed by transitivity.

Draw the Hasse diagram of the partial order on the set {a, b, c, d, e, f, g} defined as

{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g),
(a, c), (a, d), (d, g), (a, g), (b, f), (b, e), (e, g), (b, g)}

Summary: binary relations can be useful for organizing elements in a domain. Some binary relations
have special properties that make them act like some familiar relations. Equivalence relations (reflexive,
symmetric, transitive binary relations) “act like” equals. Partial orders (reflexive, antisymmetric, transitive
binary relations) “act like” less than or equals to.

CC BY-NC-SA 2.0 Version August 29, 2024 (136)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Recall that the binary relation EQR on P(R) is

{(X1, X2) ∈ P(R)× P(R) | |X1| = |X2|}

and R(mod n) is the set of all pairs of integers (a, b) such that (a mod n = b mod n).

Select all and only the correct items.

(a) (Z,R) ∈ EQR

(b) (0, 1) ∈ EQR

(c) (∅, ∅) ∈ EQR

(d) (−1, 1) ∈ R(mod 2)

(e) (1,−1) ∈ R(mod 3)

(f) (4, 16, 0) ∈ R(mod 4)

2.

Consider the binary relation on Z+ defined by {(a, b) | ∃c ∈ Z(b = ac)}. Select all and only the
properties that this binary relation has.

(a) It is reflexive.

(b) It is symmetric.

(c) It is transitive.

(d) It is antisymmetric.

3.

(a) Consider the partial order on the set P({1, 2, 3}) given by the binary relation {(X, Y) | X ⊆ Y }
i. How many nodes are in the Hasse diagram of this partial order?

ii. How many edges are in the Hasse diagram of this partial order?

(b) Consider the binary relation on {1, 2, 4, 5, 10, 20} defined by {(a, b) | ∃c ∈ Z(b = ac)}.
i. How many nodes are in the Hasse diagram of this partial order?

ii. How many edges are in the Hasse diagram of this partial order?

CC BY-NC-SA 2.0 Version August 29, 2024 (137)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday November 24

Exploring equivalence relations

A partition of a set A is a set of non-empty, disjoint subsets A1, A2, · · · , An such that

A =
n⋃

i=1

Ai = {x | ∃i(x ∈ Ai)}

An equivalence class of an element a ∈ A with respect to an equivalence relation R on the set A is the
set

{s ∈ A | (a, s) ∈ R}

We write [a]R for this set, which is the equivalence class of a with respect to R.

Fact: When R is an equivalence relation on a nonempty set A, the collection of equivalence classes of R is
a partition of A.

Also, given a partition P of A, the relation RP on A given by

RP = {(x, y) ∈ A× A | x and y are in the same part of the partition P}

is an equivalence relation on A.

Recall: We say a is congruent to b mod n means (a, b) ∈ R(mod n). A common notation is to write this
as a ≡ b(mod n).

We can partition the set of integers using equivalence classes of R(mod 4)

[0]R(mod 4)
=

[1]R(mod 4)
=

[2]R(mod 4)
=

[3]R(mod 4)
=

[4]R(mod 4)
=

[5]R(mod 4)
=

[−1]R(mod 4)
=

Z = [0]R(mod 4)
∪ [1]R(mod 4)

∪ [2]R(mod 4)
∪ [3]R(mod 4)

Integers are useful because they can be used to encode other objects and have multiple representations.
However, infinite sets are sometimes expensive to work with computationally. Reducing our attention to
a partition of the integers based on congrunce mod n, where each part is represented by a (not too large)
integer gives a useful compromise where many algebraic properties of the integers are preserved, and we
also get the benefits of a finite domain. Moreover, modular arithmetic is well-suited to model any cyclic
behavior.

CC BY-NC-SA 2.0 Version August 29, 2024 (138)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Lemma: For a, b ∈ Z and positive integer n, (a, b) ∈ R(mod n) if and only if n|a− b.

Proof:

Application: Cycling

How many minutes past the hour are we at? Model with +15 mod 60

Time: 12:00pm 12:15pm 12:30pm 12:45pm 1:00pm 1:15pm 1:30pm 1:45pm 2:00pm
“Minutes past”: 0 15 30 45 0 15 30 45 0

Replace each English letter by a letter that’s fifteen ahead of it in the alphabet Model with +15 mod 26

Original index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Original letter: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Shifted letter: P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Shifted index: 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Modular arithmetic:

Lemma: For a, b, c, d ∈ Z and positive integer n, if a ≡ b (mod n) and c ≡ d (mod n) then a + c ≡
b + d (mod n) and ac ≡ bd (mod n). Informally: can bring mod “inside” and do it first, for addition
and for multiplication.

(102 + 48) mod 10 =

(7 · 10) mod 5 =

(25) mod 3 =

CC BY-NC-SA 2.0 Version August 29, 2024 (139)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Application: Cryptography

Definition: Let a be a positive integer and p be a large8 prime number, both known to everyone. Let k1
be a secret large number known only to person P1 (Alice) and k2 be a secret large number known only to
person P2 (Bob). Let the Diffie-Helman shared key for a, p, k1, k2 be (ak1·k2 mod p).

Idea: P1 can quickly compute the Diffie-Helman shared key knowing only a, p, k1 and the result of
ak2 mod p (that is, P1 can compute the shared key without knowing k2, only ak2 mod p). Similarly,
P2 can quickly compute the Diffie-Helman shared key knowing only a, p, k2 and the result of ak1 mod p
(that is, P2 can compute the shared key without knowing k1, only ak1 mod p). But, any person P3 who
knows neither k1 nor k2 (but may know any and all of the other values) cannot compute the shared secret
efficiently.

Key property for *shared* secret:

∀a ∈ Z∀b ∈ Z∀g ∈ Z+ ∀n ∈ Z+((ga mod n)b, (gb mod n)a) ∈ R(mod n)

Key property for shared *secret*:

There are efficient algorithms to calculate the result of modular exponentiation but there are no (known)
efficient algorithms to calculate discrete logarithm.

8We leave the definition of “large” vague here, but think hundreds of digits for practical applications. In practice, we also
need a particular relationship between a and p to hold, which we leave out here.

CC BY-NC-SA 2.0 Version August 29, 2024 (140)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review

1.

Fill in the blanks in the following proof that, for any equivalence relation R on a set A,

∀a ∈ A ∀b ∈ A ((a, b) ∈ R ↔ [a]R ∩ [b]R ̸= ∅)

Proof: Towards a (a) , consider arbitrary elements a, b in A. We will prove the
biconditional statement by proving each direction of the conditional in turn.

Goal 1: we need to show (a, b) ∈ R → [a]R ∩ [b]R ̸= ∅ Proof of Goal 1: Assume towards a
(b) that (a, b) ∈ R. We will work to show that [a]R ∩ [b]R ̸= ∅. Namely, we
need an element that is in both equivalence classes, that is, we need to prove the existential claim
∃x ∈ A (x ∈ [a]R ∧ x ∈ [b]R). Towards a (c) , consider x = b, an element of A by
definition. By (d) of R, we know that (b, b) ∈ R and thus, b ∈ [b]R. By assumption
in this proof, we have that (a, b) ∈ R, and so by definition of equivalence classes, b ∈ [a]R. Thus, we
have proved both conjuncts and this part of the proof is complete.

Goal 2: we need to show [a]R ∩ [b]R ̸= ∅ → (a, b) ∈ R Proof of Goal 2: Assume towards a
(e) that [a]R ∩ [b]R ̸= ∅. We will work to show that (a, b) ∈ R. By our as-
sumption, the existential claim ∃x ∈ A (x ∈ [a]R ∧ x ∈ [b]R) is true. Call w a witness; thus, w ∈ [a]R
and w ∈ [b]R. By definition of equivalence classes, w ∈ [a]R means (a, w) ∈ R and w ∈ [b]R means
(b, w) ∈ R. By (f) of R, (w, b) ∈ R. By (g) of R, since (a, w) ∈ R
and (w, b) ∈ R, we have that (a, b) ∈ R, as required for this part of the proof.

Consider the following expressions as options to fill in the two proofs above. Give your answer as one
of the numbers below for each blank a-c. You may use some numbers for more than one blank, but
each letter only uses one of the expressions below.

i exhaustive proof

ii proof by universal generalization

iii proof of existential using a witness

iv proof by cases

v direct proof

vi proof by contrapositive

vii proof by contradiction

viii reflexivity

ix symmetry

x transitivity

2.

Modular exponentiation is required to carry out the Diffie-Helman protocol for computing a shared
secret over an unsecure channel.

Consider the following algorithm for fast exponentiation (based on binary expansion of the exponent).

Modular Exponentation
1 procedure modular exponentiation(b : i n t e g e r ;
2 n = (ak−1ak−2 . . . a1a0)2 , m : p o s i t i v e i n t e g e r s)
3 x := 1
4 power := b mod m
5 for i:= 0 to k − 1
6 i f ai = 1 then x:= (x · power) mod m
7 power := (power · power) mod m
8 return x {x equals bn mod m}

CC BY-NC-SA 2.0 Version August 29, 2024 (141)

https://creativecommons.org/licenses/by-nc-sa/2.0/

(a) If we wanted to calculate 38 mod 7 using the modular exponentation algorithm above, what are
the values of the parameters b, n, andm? (Write these values in usual, decimal-like, mathematical
notation.)

(b) Give the output of the modular exponentiation algorithm with these parameters, i.e. calculate
38 mod 7. (Write these values in usual, decimal-like, mathematical notation.)

CC BY-NC-SA 2.0 Version August 29, 2024 (142)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday November 26

No class, in observance of Thanksgiving holiday.

CC BY-NC-SA 2.0 Version August 29, 2024 (143)

https://creativecommons.org/licenses/by-nc-sa/2.0/

