Definitions

Term	Notation Example(s)	We say in English
sequence	x_1, \ldots, x_n	A sequence x_1 to x_n
summation	$\sum_{i=1}^{n} x_i$ or $\sum_{i=1}^{n} x_i$	The sum of the terms of the sequence x_1 to x_n
all reals	\mathbb{R}	The (set of all) real numbers (numbers on the number line)
all integers	\mathbb{Z}	The (set of all) integers (whole numbers including neg- atives, zero, and positives)
all positive integers	\mathbb{Z}^+	The (set of all) strictly positive integers
all natural numbers	Ν	The (set of all) natural numbers. Note : we use the convention that 0 is a natural number.
piecewise rule definition	$f(x) = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$	Define f of x to be x when x is nonnegative and to be $-x$ when x is negative
function application	$ \begin{array}{l} f(7) \\ f(z) \\ f(g(z)) \end{array} $	f of 7 or f applied to 7 or the image of 7 under $ff of z or f applied to z or the image of z under ff of g of z or f applied to the result of g applied to z$
absolute value square root	$\begin{array}{c} -3 \\ \sqrt{9} \end{array}$	The absolute value of -3 The non-negative square root of 9

Defining sets

To define sets:

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid \dots x \dots\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{\dots x \dots \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

 $\{-1, 1\}$ $\{0, 0\}$ $\{-1, 0, 1\}$ $\{(x, x, x) \mid x \in \{-1, 0, 1\}\}$ $\{\}$ $\{x \in \mathbb{Z} \mid x \ge 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{A, C, U, G\}$ $\{AUG, UAG, UGA, UAA\}$

Least greatest proofs

For a set of numbers X, how do you formalize "there is a greatest X" or "there is a least X"?

Prove or **disprove**: There is a least prime number.

Prove or disprove: There is a greatest integer.

Approach 1, De Morgan's and universal generalization:

Approach 2, proof by contradiction:

Extra examples: Prove or disprove that \mathbb{N} , \mathbb{Q} each have a least and a greatest element.

Gcd definition

Definition: Greatest common divisor Let a and b be integers, not both zero. The largest integer d such that d is a factor of a and d is a factor of b is called the greatest common divisor of a and b and is denoted by gcd((a, b)).

Gcd examples

Why do we restrict to the situation where a and b are not both zero?

Calculate gcd((10, 15))

Calculate gcd((10, 20))

Gcd basic claims

Claim: For any integers a, b (not both zero), $gcd((a, b)) \ge 1$.

Proof: Show that 1 is a common factor of any two integers, so since the gcd is the greatest common factor it is greater than or equal to any common factor.

Claim: For any positive integers $a, b, gcd((a, b)) \leq a$ and $gcd((a, b)) \leq b$.

Proof Using the definition of gcd and the fact that factors of a positive integer are less than or equal to that integer.

Claim: For any positive integers a, b, if a divides b then gcd((a, b)) = a.

Proof Using previous claim and definition of gcd.

Claim: For any positive integers a, b, c, if there is some integer q such that a = bq + c,

$$gcd((a,b)) = gcd((b,c))$$

CC BY-NC-SA 2.0 Version August 29, 2024 (5)

Proof Prove that any common divisor of a, b divides c and that any common divisor of b, c divides a.

Gcd lemma relatively prime

Lemma: For any integers p, q (not both zero), $gcd\left(\left(\frac{p}{gcd((p,q))}, \frac{q}{gcd((p,q))}\right)\right) = 1$. In other words, can reduce to relatively prime integers by dividing by gcd.

Proof:

Let x be arbitrary positive integer and assume that x is a factor of each of $\frac{p}{gcd((p,q))}$ and $\frac{q}{gcd((p,q))}$. This gives integers α , β such that

$$\alpha x = \frac{p}{gcd((p,q))} \qquad \qquad \beta x = \frac{q}{gcd((p,q))}$$

Multiplying both sides by the denominator in the RHS:

$$\alpha x \cdot gcd((p,q)) = p \qquad \qquad \beta x \cdot gcd((p,q)) = q$$

In other words, $x \cdot gcd((p,q))$ is a common divisor of p,q. By definition of gcd, this means

$$x \cdot gcd((p,q)) \leq gcd((p,q))$$

and since $gcd(\ (p,q)\)$ is positive, this means, $x\leq 1.$

Least greatest proofs

For a set of numbers X, how do you formalize "there is a greatest X" or "there is a least X"?

Prove or **disprove**: There is a least prime number.

Prove or disprove: There is a greatest integer.

Approach 1, De Morgan's and universal generalization:

Approach 2, proof by contradiction:

Extra examples: Prove or disprove that \mathbb{N} , \mathbb{Q} each have a least and a greatest element.

Gcd definition

Definition: Greatest common divisor Let a and b be integers, not both zero. The largest integer d such that d is a factor of a and d is a factor of b is called the greatest common divisor of a and b and is denoted by gcd((a, b)).

Gcd examples

Why do we restrict to the situation where a and b are not both zero?

Calculate gcd((10, 15))

Calculate gcd((10, 20))

Gcd basic claims

Claim: For any integers a, b (not both zero), $gcd((a, b)) \ge 1$.

Proof: Show that 1 is a common factor of any two integers, so since the gcd is the greatest common factor it is greater than or equal to any common factor.

Claim: For any positive integers $a, b, gcd((a, b)) \leq a$ and $gcd((a, b)) \leq b$.

Proof Using the definition of gcd and the fact that factors of a positive integer are less than or equal to that integer.

Claim: For any positive integers a, b, if a divides b then gcd((a, b)) = a.

Proof Using previous claim and definition of gcd.

Claim: For any positive integers a, b, c, if there is some integer q such that a = bq + c,

$$gcd((a,b)) = gcd((b,c))$$

CC BY-NC-SA 2.0 Version August 29, 2024 (10)

Proof Prove that any common divisor of a, b divides c and that any common divisor of b, c divides a.

Gcd lemma relatively prime

Lemma: For any integers p, q (not both zero), $gcd\left(\left(\frac{p}{gcd((p,q))}, \frac{q}{gcd((p,q))}\right)\right) = 1$. In other words, can reduce to relatively prime integers by dividing by gcd.

Proof:

Let x be arbitrary positive integer and assume that x is a factor of each of $\frac{p}{gcd((p,q))}$ and $\frac{q}{gcd((p,q))}$. This gives integers α , β such that

$$\alpha x = \frac{p}{gcd((p,q))} \qquad \qquad \beta x = \frac{q}{gcd((p,q))}$$

Multiplying both sides by the denominator in the RHS:

$$\alpha x \cdot gcd((p,q)) = p \qquad \qquad \beta x \cdot gcd((p,q)) = q$$

In other words, $x \cdot gcd((p,q))$ is a common divisor of p,q. By definition of gcd, this means

$$x \cdot gcd((p,q)) \leq gcd((p,q))$$

and since $gcd(\ (p,q)\)$ is positive, this means, $x\leq 1.$

Definitions

Term	Notation Example(s)	We say in English
sequence	x_1,\ldots,x_n	A sequence x_1 to x_n
summation	$\sum_{i=1}^{n} x_i$ or $\sum_{i=1}^{n} x_i$	The sum of the terms of the sequence x_1 to x_n
all reals	\mathbb{R}	The (set of all) real numbers (numbers on the number line)
all integers	Z	The (set of all) integers (whole numbers including neg- atives, zero, and positives)
all positive integers	\mathbb{Z}^+	The (set of all) strictly positive integers
all natural numbers	Ν	The (set of all) natural numbers. Note : we use the convention that 0 is a natural number.
piecewise rule definition	$f(x) = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$	Define f of x to be x when x is nonnegative and to be $-x$ when x is negative
function application	$ \begin{array}{l} f(7) \\ f(z) \\ f(g(z)) \end{array} $	f of 7 or f applied to 7 or the image of 7 under ff of z or f applied to z or the image of z under ff of g of z or f applied to the result of g applied to z
absolute value square root	$\frac{ -3 }{\sqrt{9}}$	The absolute value of -3 The non-negative square root of 9

Defining sets

To define sets:

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid \dots x \dots\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{\dots x \dots \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

 $\{-1, 1\}$ $\{0, 0\}$ $\{-1, 0, 1\}$ $\{(x, x, x) \mid x \in \{-1, 0, 1\}\}$ $\{\}$ $\{x \in \mathbb{Z} \mid x \ge 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{x \in \mathbb{Z} \mid x > 0\}$ $\{A, C, U, G\}$ $\{AUG, UAG, UGA, UAA\}$