Definitions

Defining sets

To define sets:

To define a set using roster method, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$
\{x \in U \mid \dots x \dots\}
$$

or form "the collection of all outputs of some operation when the input ranges over the universe U^* by writing

$$
\{\ldots x \ldots \mid x \in U\}
$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

```
{-1, 1}{0,0}\{-1, 0, 1\}\{(x, x, x) \mid x \in \{-1, 0, 1\}\}\{}
{x \in \mathbb{Z} \mid x \geq 0}{x \in \mathbb{Z} \mid x > 0}{A, C, U, G}{AUG, UAG, UGA, UAA}
```
Least greatest proofs

For a set of numbers X , how do you formalize "there is a greatest X " or "there is a least X "?

Prove or disprove: There is a least prime number.

Prove or disprove: There is a greatest integer.

Approach 1, De Morgan's and universal generalization:

Approach 2, proof by contradiction:

Extra examples: Prove or disprove that N, Q each have a least and a greatest element.

Gcd definition

Definition: Greatest common divisor Let a and b be integers, not both zero. The largest integer d such that d is a factor of a and d is a factor of b is called the greatest common divisor of a and b and is denoted by $gcd((a, b))$.

Gcd examples

Why do we restrict to the situation where a and b are not both zero?

Calculate $gcd((10, 15))$

Calculate $gcd((10, 20))$

Gcd basic claims

Claim: For any integers a, b (not both zero), gcd((a, b)) ≥ 1 .

Proof: Show that 1 is a common factor of any two integers, so since the gcd is the greatest common factor it is greater than or equal to any common factor.

Claim: For any positive integers a, b, gcd((a, b)) $\le a$ and gcd((a, b)) $\le b$.

Proof Using the definition of gcd and the fact that factors of a positive integer are less than or equal to that integer.

Claim: For any positive integers a, b, if a divides b then $gcd((a, b)) = a$.

Proof Using previous claim and definition of gcd.

Claim: For any positive integers a, b, c, if there is some integer q such that $a = bq + c$,

$$
gcd((a, b)) = gcd((b, c))
$$

[CC BY-NC-SA 2.0](https://creativecommons.org/licenses/by-nc-sa/2.0/) Version August 29, 2024 (5)

Proof Prove that any common divisor of a, b divides c and that any common divisor of b, c divides a.

Gcd lemma relatively prime

Lemma: For any integers p, q (not both zero), $gcd\left(\left(\frac{p}{gcd(\ (p,q))}, \frac{q}{gcd(\ (p,q))}\right)\right) = 1$. In other words, can reduce to relatively prime integers by dividing by gcd.

Proof:

Let x be arbitrary positive integer and assume that x is a factor of each of $\frac{p}{gcd((p,q))}$ and $\frac{q}{gcd((p,q))}$. This gives integers α , β such that

$$
\alpha x = \frac{p}{gcd(\ (p,q)\)} \qquad \beta x = \frac{q}{gcd(\ (p,q)\)}
$$

Multiplying both sides by the denominator in the RHS:

$$
\alpha x \cdot \gcd(\ (p,q) \) = p \qquad \beta x \cdot \gcd(\ (p,q) \) = q
$$

In other words, $x \cdot \gcd((p, q))$ is a common divisor of p, q. By definition of gcd, this means

$$
x \cdot \gcd(\ (p, q) \) \le \gcd(\ (p, q) \)
$$

and since $gcd((p, q))$ is positive, this means, $x \leq 1$.

Least greatest proofs

For a set of numbers X , how do you formalize "there is a greatest X " or "there is a least X "?

Prove or disprove: There is a least prime number.

Prove or disprove: There is a greatest integer.

Approach 1, De Morgan's and universal generalization:

Approach 2, proof by contradiction:

Extra examples: Prove or disprove that N, Q each have a least and a greatest element.

Gcd definition

Definition: Greatest common divisor Let a and b be integers, not both zero. The largest integer d such that d is a factor of a and d is a factor of b is called the greatest common divisor of a and b and is denoted by $gcd((a, b))$.

Gcd examples

Why do we restrict to the situation where a and b are not both zero?

Calculate $gcd((10, 15))$

Calculate $gcd((10, 20))$

Gcd basic claims

Claim: For any integers a, b (not both zero), gcd((a, b)) ≥ 1 .

Proof: Show that 1 is a common factor of any two integers, so since the gcd is the greatest common factor it is greater than or equal to any common factor.

Claim: For any positive integers a, b, gcd((a, b)) $\le a$ and gcd((a, b)) $\le b$.

Proof Using the definition of gcd and the fact that factors of a positive integer are less than or equal to that integer.

Claim: For any positive integers a, b, if a divides b then $gcd((a, b)) = a$.

Proof Using previous claim and definition of gcd.

Claim: For any positive integers a, b, c, if there is some integer q such that $a = bq + c$,

$$
gcd((a, b)) = gcd((b, c))
$$

[CC BY-NC-SA 2.0](https://creativecommons.org/licenses/by-nc-sa/2.0/) Version August 29, 2024 (10)

Proof Prove that any common divisor of a, b divides c and that any common divisor of b, c divides a.

Gcd lemma relatively prime

Lemma: For any integers p, q (not both zero), $gcd\left(\left(\frac{p}{gcd(\ (p,q))}, \frac{q}{gcd(\ (p,q))}\right)\right) = 1$. In other words, can reduce to relatively prime integers by dividing by gcd.

Proof:

Let x be arbitrary positive integer and assume that x is a factor of each of $\frac{p}{gcd((p,q))}$ and $\frac{q}{gcd((p,q))}$. This gives integers α , β such that

$$
\alpha x = \frac{p}{gcd(\ (p,q)\)} \qquad \beta x = \frac{q}{gcd(\ (p,q)\)}
$$

Multiplying both sides by the denominator in the RHS:

$$
\alpha x \cdot \gcd(\ (p,q) \) = p \qquad \beta x \cdot \gcd(\ (p,q) \) = q
$$

In other words, $x \cdot \gcd((p, q))$ is a common divisor of p, q. By definition of gcd, this means

$$
x \cdot \gcd(\ (p, q) \) \le \gcd(\ (p, q) \)
$$

and since $gcd((p, q))$ is positive, this means, $x \leq 1$.

Definitions

Defining sets

To define sets:

To define a set using roster method, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using set builder definition, either form "The set of all x from the universe U such that x is ..." by writing

$$
\{x \in U \mid \dots x \dots\}
$$

or form "the collection of all outputs of some operation when the input ranges over the universe U^* by writing

$$
\{\ldots x \ldots \mid x \in U\}
$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

```
{-1, 1}{0,0}\{-1, 0, 1\}\{(x, x, x) \mid x \in \{-1, 0, 1\}\}\{}
{x \in \mathbb{Z} \mid x \geq 0}{x \in \mathbb{Z} \mid x > 0}{A, C, U, G}{AUG, UAG, UGA, UAA}
```