For a set of numbers \(X\), how do you formalize “there is a greatest \(X\)” or “there is a least \(X\)”?
Prove or disprove: There is a least prime number.
Prove or disprove: There is a greatest integer.
Approach 1, De Morgan’s and universal generalization:
Approach 2, proof by contradiction:
Extra examples: Prove or disprove that \(\mathbb{N}\), \(\mathbb{Q}\) each have a least and a greatest element.
For a set of numbers \(X\), how do you formalize “there is a greatest \(X\)” or “there is a least \(X\)”?
Prove or disprove: There is a least prime number.
Prove or disprove: There is a greatest integer.
Approach 1, De Morgan’s and universal generalization:
Approach 2, proof by contradiction:
Extra examples: Prove or disprove that \(\mathbb{N}\), \(\mathbb{Q}\) each have a least and a greatest element.