
Week5

Week 5 at a glance

We will be learning and practicing to:

• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Translating between symbolic and English versions of statements using precise mathematical
language

– Using appropriate signpost words to improve readability of proofs, including ’arbitrary’ and
’assume’

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems. Use mathematical techniques to solve problems. Determine appro-
priate conceptual tools to apply to new situations. Know when tools do not apply and try different
approaches. Critically analyze and evaluate candidate solutions.

– Judging logical equivalence of compound propositions using symbolic manipulation with known
equivalences, including DeMorgan’s Law

– Writing the converse, contrapositive, and inverse of a given conditional statement

– Determining what evidence is required to establish that a quantified statement is true or false

– Evaluating quantified statements about finite and infinite domains

• Apply proof strategies, including direct proofs and proofs by contradiction, and determine whether a
proposed argument is valid or not.

– Identifying the proof strategies used in a given proof

– Identifying which proof strategies are applicable to prove a given compound proposition based
on its logical structure

– Carrying out a given proof strategy to prove a given statement

– Carrying out a universal generalization argument to prove that a universal statement is true

– Using proofs as knowledge discovery tools to decide whether a statement is true or false

TODO:

Project due May 7, 2024. No review quiz this week.

Test 1, in class this week, on Friday May 3, 2024. The test covers material in Weeks 1 through 4 and
Monday of Week 5. To study for the exam, we recommend reviewing class notes (e.g. annotations
linked on the class website, podcast, supplementary video from the class website), reviewing homework
(and its posted sample solutions), and in particular *working examples* (extra examples in lecture
notes, review quizzes, discussion examples) and getting feedback (office hours and Piazza). Some
practice questions (and their solutions) are available on the class website, linked from Week 5 and
from the Assignments page.

CC BY-NC-SA 2.0 Version August 29, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 5 Monday: Nested Quantifiers

Recall the definitions: The set of RNA strands S is defined (recursively) by:

Basis Step: A ∈ S, C ∈ S, U ∈ S, G ∈ S
Recursive Step: If s ∈ S and b ∈ B, then sb ∈ S

where sb is string concatenation.

The function rnalen that computes the length of RNA strands in S is defined recursively by:

rnalen : S → Z+

Basis Step: If b ∈ B then rnalen(b) = 1
Recursive Step: If s ∈ S and b ∈ B, then rnalen(sb) = 1 + rnalen(s)

The function basecount that computes the number of a given base b appearing in a RNA strand s is defined
recursively by:

basecount : S ×B → N

Basis Step: If b1 ∈ B, b2 ∈ B basecount((b1, b2)) =

{
1 when b1 = b2

0 when b1 ̸= b2

Recursive Step: If s ∈ S, b1 ∈ B, b2 ∈ B basecount((sb1, b2)) =

{
1 + basecount((s, b2)) when b1 = b2

basecount((s, b2)) when b1 ̸= b2

Alternating nested quantifiers

∀s ∈ S ∃n ∈ N (basecount((s, U)) = n)

In English: For each strand, there is a nonnnegative integer that counts the number of occurrences of U in
that strand.

∃n ∈ N ∀s ∈ S (basecount((s, U)) = n)

In English: There is a nonnnegative integer that counts the number of occurrences of U in every strand.

Are these statements true or false?

CC BY-NC-SA 2.0 Version August 29, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

∀s ∈ S ∃b ∈ B (basecount((s, b)) = 3)

In English: For each RNA strand there is a base that occurs 3 times in this strand.

Write the negation and use De Morgan’s law to find a logically equivalent version where the negation is
applied only to the BC predicate (not next to a quantifier).

Is the original statement True or False?

Proof strategies

When a predicate P (x) is over a finite domain:

• To show that ∀xP (x) is true: check that P (x) evaluates to T at each domain element by evaluating
over and over. This is called “Proof of universal by exhaustion”.

• To show that ∀xP (x) is false: find a counterexample, a domain element where P (x) evaluates to F .

• To show that ∃xP (x) is true: find a witness, a domain element where P (x) evaluates to T .

• To show that ∃xP (x) is false: check that P (x) evaluates to F at each domain element by evaluating
over and over. DeMorgan’s Law gives that ¬∃xP (x) ≡ ∀x¬P (x) so this amounts to a proof of
universal by exhaustion.

New! Proof by universal generalization: To prove that ∀xP (x) is true, we can take an arbitrary
element e from the domain of quantification and show that P (e) is true, without making any assumptions
about e other than that it comes from the domain.
An arbitrary element of a set or domain is a fixed but unknown element from that set.

CC BY-NC-SA 2.0 Version August 29, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose P (x) is a predicate over a domain D.

1. True or False: To translate the statement “There are at least two elements in D where the predicate
P evaluates to true”, we could write

∃x1 ∈ D ∃x2 ∈ D (P (x1) ∧ P (x2))

2. True or False: To translate the statement “There are at most two elements in D where the predicate
P evaluates to true”, we could write

∀x1 ∈ D ∀x2 ∈ D ∀x3 ∈ D ((P (x1) ∧ P (x2) ∧ P (x3)) → (x1 = x2 ∨ x2 = x3 ∨ x1 = x3))

CC BY-NC-SA 2.0 Version August 29, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 5 Wednesday: Proof Strategies and Sets

Definitions:

A set is an unordered collection of elements. When A and B are sets, A = B (set equality) means

∀x(x ∈ A ↔ x ∈ B)

When A and B are sets, A ⊆ B (“A is a subset of B”) means

∀x(x ∈ A → x ∈ B)

When A and B are sets, A ⊊ B (“A is a proper subset of B”) means

(A ⊆ B) ∧ (A ̸= B)

New! Proof of conditional by direct proof: To prove that the conditional statement p → q is true,
we can assume p is true and use that assumption to show q is true.

New! Proof of conditional by contrapositive proof: To prove that the implication p → q is true, we
can assume q is false and use that assumption to show p is also false.

New! Proof of disjuction using equivalent conditional: To prove that the disjunction p ∨ q is true,
we can rewrite it equivalently as ¬p → q and then use direct proof or contrapositive proof.

New! Proof by Cases: To prove q, we can work by cases by first describing all possible cases we might
be in and then showing that each one guarantees q. Formally, if we know that p1 ∨ p2 is true, and we can
show that (p1 → q) is true and we can show that (p2 → q), then we can conclude q is true.

New! Proof of conjunctions with subgoals: To show that p∧ q is true, we have two subgoals: subgoal
(1) prove p is true; and, subgoal (2) prove q is true.

To show that p ∧ q is false, it’s enough to prove that ¬p.
To show that p ∧ q is false, it’s enough to prove that ¬q.

To prove that one set is a subset of another, e.g. to show A ⊆ B:

To prove that two sets are equal, e.g. to show A = B:

CC BY-NC-SA 2.0 Version August 29, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: {43, 7, 9} = {7, 43, 9, 7}

Prove or disprove: {A, C, U, G} ⊆ {AA, AC, AU, AG}

Prove or disprove: For some set B, ∅ ∈ B.

Prove or disprove: For every set B, ∅ ∈ B.

Prove or disprove: The empty set is a subset of every set.

CC BY-NC-SA 2.0 Version August 29, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Prove or disprove: The empty set is a proper subset of every set.

Prove or disprove: {4, 6} ⊆ {n | ∃c ∈ Z(n = 4c)}

Prove or disprove: {4, 6} ⊆ {n mod 10 | ∃c ∈ Z(n = 4c)}

Consider . . . , an arbitrary Assume . . . , we want to show that Which is what was needed, so
the proof is complete □.

or, in other words:

Let . . . be an arbitrary Assume . . . , WTS that . . .QED.

CC BY-NC-SA 2.0 Version August 29, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Cartesian product: When A and B are sets,

A×B = {(a, b) | a ∈ A ∧ b ∈ B}

Example: {43, 9} × {9,Z} =

Example: Z× ∅ =

Union: When A and B are sets,
A ∪B = {x | x ∈ A ∨ x ∈ B}

Example: {43, 9} ∪ {9,Z} =

Example: Z ∪ ∅ =

Intersection: When A and B are sets,

A ∩B = {x | x ∈ A ∧ x ∈ B}

Example: {43, 9} ∩ {9,Z} =

Example: Z ∩ ∅ =

Set difference: When A and B are sets,

A−B = {x | x ∈ A ∧ x /∈ B}

Example: {43, 9} − {9,Z} =

Example: Z− ∅ =

Disjoint sets: sets A and B are disjoint means A ∩B = ∅

Example: {43, 9}, {9,Z} are not disjoint

Example: The sets Z and ∅ are disjoint

Power set: When U is a set, P(U) = {X | X ⊆ U}

Example: P({43, 9}) =

Example: P(∅) =

CC BY-NC-SA 2.0 Version August 29, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

