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Structural induction example robot grid

Theorem: A robot on an infinite 2-dimensional integer grid starts at (0, 0) and at each step moves to
diagonally adjacent grid point. This robot can / cannot (circle one) reach (1, 0).

Definition The set of positions the robot can visit Pos is defined by:

Basis Step: (0, 0) ∈ Pos
Recursive Step: If (x, y) ∈ Pos, then

are also in Pos

Example elements of Pos are:

Lemma: ∀(x, y) ∈ Pos (x+ y is an even integer )

Why are we calling this a lemma?

Proof of theorem using lemma: To show is (1, 0) /∈ Pos. Rewriting the lemma to explicitly restrict the
domain of the universal, we have ∀(x, y) ( (x, y) ∈ Pos → (x+y is an even integer) ). Since the universal
is true, ( (1, 0) ∈ Pos → (1 + 0 is an even integer) ) is a true statement. Evaluating the conclusion of
this conditional statement: By definition of long division, since 1 = 0 · 2 + 1 (where 0 ∈ Z and 1 ∈ Z and
0 ≤ 1 < 2 mean that 0 is the quotient and 1 is the remainder), 1 mod 2 = 1 which is not 0 so the conclusion
is false. A true conditional with a false conclusion must have a false hypothesis: (1, 0) /∈ Pos, QED. □

Proof of lemma by structural induction:

Basis Step:
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Recursive Step: Consider arbitrary (x, y) ∈ Pos. To show is:

(x+ y is an even integer) → (sum of coordinates of next position is even integer)

Assume as the induction hypothesis, IH that:

CC BY-NC-SA 2.0 Version August 29, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Fundamental theorem proof

Theorem: Every positive integer greater than 1 is a product of (one or more) primes.

Before we prove, let’s try some examples:

20 =

100 =

5 =

Proof by strong induction, with b = 2 and j = 0.

Basis step: WTS property is true about 2.

Since 2 is itself prime, it is already written as a product of (one) prime.

Recursive step: Consider an arbitrary integer n ≥ 2. Assume (as the strong induction hypothesis, IH)
that the property is true about each of 2, . . . , n. WTS that the property is true about n + 1: We want to
show that n+ 1 can be written as a product of primes. Notice that n+ 1 is itself prime or it is composite.

Case 1: assume n + 1 is prime and then immediately it is written as a product of (one) prime so we are
done.

Case 2: assume that n + 1 is composite so there are integers x and y where n + 1 = xy and each of them
is between 2 and n (inclusive). Therefore, the induction hypothesis applies to each of x and y so each of
these factors of n+ 1 can be written as a product of primes. Multiplying these products together, we get a
product of primes that gives n+ 1, as required.

Since both cases give the necessary conclusion, the proof by cases for the recursive step is complete.
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Strong induction making change proof idea

Suppose we had postage stamps worth 5 cents and 3 cents. Which number of cents can we form using these
stamps? In other words, which postage can we pay?

11?

15?

4?

CanPay(0) ∧ ¬CanPay(1) ∧ ¬CanPay(2)∧
CanPay(3) ∧ ¬CanPay(4) ∧ CanPay(5) ∧ CanPay(6)

¬CanPay(7) ∧ ∀n ∈ Z≥8CanPay(n)

where the predicate CanPay with domain N is

CanPay(n) = ∃x ∈ N∃y ∈ N(5x+ 3y = n)

Proof (idea): First, explicitly give witnesses or general arguments for postages between 0 and 7. To prove
the universal claim, we can use mathematical induction or strong induction.

Approach 1, mathematical induction: if we have stamps that add up to n cents, need to use them (and
others) to give n+ 1 cents. How do we get 1 cent with just 3-cent and 5-cent stamps?

Either take away a 5-cent stamps and add two 3-cent stamps,

or take away three 3-cent stamps and add two 5-cent stamps.

The details of this proof by mathematical induction are making sure we have enough stamps to use one of
these approaches.

Approach 2, strong induction: assuming we know how to make postage for all smaller values (greater than or
equal to 8), when we need to make n+1 cents, add one 3 cent stamp to however we make (n+ 1)− 3 cents.

The details of this proof by strong induction are making sure we stay in the domain of the universal when
applying the induction hypothesis.
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Strong induction nim

Consider the following game: two players start with two (equal) piles of jellybeans in front of them. They
take turns removing any positive integer number of jellybeans at a time from one of two piles in front of
them in turns.

The player who removes the last jellybean wins the game.

Which player (if any) has a strategy to guarantee to win the game?

Try out some games, starting with 1 jellybean in each pile, then 2 jellybeans in each pile, then 3 jellybeans
in each pile. Who wins in each game?

Notice that reasoning about the strategy for the 1 jellybean game is easier than about the strategy for the
2 jellybean game.

Formulate a winning strategy by working to transform the game to a simpler one we know we can win.
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Player 2’s Strategy: Take the same number of jellybeans that Player 1 did, but from the opposite pile.

Why is this a good idea: If Player 2 plays this strategy, at the next turn Player 1 faces a game with the
same setup as the original, just with fewer jellybeans in the two piles. Then Player 2 can keep playing this
strategy to win.

Claim: Player 2’s strategy guarantees they will win the game.

Proof: By strong induction, we will prove that for all positive integers n, Player 2’s strategy guarantees a
win in the game that starts with n jellybeans in each pile.

Basis step: WTS Player 2’s strategy guarantees a win when each pile starts with 1 jellybean.

In this case, Player 1 has to take the jellybean from one of the piles (because they can’t take from both
piles at once). Following the strategy, Player 2 takes the jellybean from the other pile, and wins because
this is the last jellybean.

Recursive step: Let n be a positive integer. As the strong induction hypothesis, assume that Player 2’s
strategy guarantees a win in the games where there are 1, 2, . . . , n many jellybeans in each pile at the start
of the game.

WTS that Player 2’s strategy guarantees a win in the game where there are n+ 1 in the jellybeans in each
pile at the start of the game.

In this game, the first move has Player 1 take some number, call it c (where 1 ≤ c ≤ n + 1), of jellybeans
from one of the piles. Playing according to their strategy, Player 2 then takes the same number of jellybeans
from the other pile.

Notice that (c = n+ 1) ∨ (c ≤ n).

Case 1: Assume c = n+ 1, then in their first move, Player 2 wins because they take all of the second pile,
which includes the last jellybean.

Case 2: Assume c ≤ n. Then after Player 2’s first move, the two piles have an equal number of jellybeans.
The number of jellybeans in each pile is

(n+ 1)− c

and, since 1 ≤ c ≤ n, this number is between 1 and n. Thus, at this stage of the game, the game appears
identical to a new game where the two piles have an equal number of jellybeans between 1 and n. Thus,
the strong induction hypothesis applies, and Player 2’s strategy guarantees they win.
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