Algorithm redundancy

Real-life representations are often prone to corruption. Biological codes, like RNA, may mutate naturally¹ and during measurement; cosmic radiation and other ambient noise can flip bits in computer storage². One way to recover from corrupted data is to introduce or exploit redundancy.

Consider the following algorithm to introduce redundancy in a string of 0s and 1s.

Create redundancy by repeating each bit three times

```
1 procedure redun3(a_{k-1} \cdots a_0): a nonempty bitstring)

2 for i := 0 to k-1

3 c_{3i} := a_i

4 c_{3i+1} := a_i

5 c_{3i+2} := a_i

6 return c_{3k-1} \cdots c_0
```

Decode sequence of bits using majority rule on consecutive three bit sequences

```
1 procedure decode3(c_{3k-1}\cdots c_0): a nonempty bitstring whose length is an integer multiple of 3)

2 for i := 0 to k-1

3 if exactly two or three of c_{3i}, c_{3i+1}, c_{3i+2} are set to 1

4 a_i := 1

5 else

6 a_i := 0

7 return a_{k-1}\cdots a_0
```

Give a recursive definition of the set of outputs of the *redun3* procedure, Out,

Consider the message m = 0001 so that the sender calculates redun3(m) = redun3(0001) = 000000000111.

Introduce _____ errors into the message so that the signal received by the receiver is ______ but the receiver is still able to decode the original message.

Challenge: what is the biggest number of errors you can introduce?

Building a circuit for lines 3-6 in *decode* procedure: given three input bits, we need to determine whether the majority is a 0 or a 1.

c_{3i}	C_{3i+1}	c_{3i+2}
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0

¹Mutations of specific RNA codons have been linked to many disorders and cancers.

²This RadioLab podcast episode goes into more detail on bit flips: https://www.wnycstudios.org/story/bit-flip

Algorithm rna mutation insertion deletion

Recall that S is defined as the set of all RNA strands, nonempty strings made of the bases in $B = \{A, U, G, C\}$. We define the functions

 $mutation: S \times \mathbb{Z}^+ \times B \to S$ insertion: $S \times \mathbb{Z}^+ \times B \to S$ $deletion: \{s \in S \mid rnalen(s) > 1\} \times \mathbb{Z}^+ \to S$ with rules **procedure** mutation $(b_1 \cdots b_n)$: a RNA strand, k: a positive integer, b: an element of B) 1 for i := 1 to n2 if i = k3 $c_i := b$ 4 else 56 $c_i := b_i$ **return** $c_1 \cdots c_n$ {The return value is a RNA strand made of the c_i values} 7 **procedure** *insertion* $(b_1 \cdots b_n)$: a RNA strand, k: a positive integer, b: an element of B) 1 if k > n2 for i := 1 to n3 $c_i := b_i$ 4 c_{n+1} := b $\mathbf{5}$ 6 else $\overline{7}$ for i := 1 to k - 1 $c_i := b_i$ 8 9 $c_k := b$ for i := k+1 to n+110 11 $c_i := b_{i-1}$ **return** $c_1 \cdots c_{n+1}$ {The return value is a RNA strand made of the c_i values} 12**procedure** deletion $(b_1 \cdots b_n)$: a RNA strand with n > 1, k: a positive integer) 1 $\mathbf{2}$ if k > n $m \ := \ n$ 3 for i := 1 to n4 $c_i := b_i$ $\mathbf{5}$ else 6 $m \ := \ n-1$ $\overline{7}$ for i := 1 to k-18 9 $c_i := b_i$ for i := k to n-110 $c_i := b_{i+1}$ 11 12**return** $c_1 \cdots c_m$ {The return value is a RNA strand made of the c_i values}

Algorithm definition

New! An algorithm is a finite sequence of precise instructions for solving a problem.

Algorithms can be expressed in English or in more formalized descriptions like pseudocode or fully executable programs.

Sometimes, we can define algorithms whose output matches the rule for a function we already care about. Consider the (integer) logarithm function

$$logb: \{b \in \mathbb{Z} \mid b > 1\} \times \mathbb{Z}^+ \quad \to \quad \mathbb{N}$$

defined by

logb((b, n)) =greatest integer y so that b^y is less than or equal to n

	Calculating integer part of base b logarithm
1	procedure $logb(b,n)$: positive integers with $b > 1$)
2	i := 0
3	while $n > b-1$
4	i := i+1
5	$n := n \operatorname{\mathbf{div}} b$
6	return $i \{i \text{ holds the integer part of the base } b \text{ logarithm of } n \}$

Trace this algorithm with inputs b = 3 and n = 17

	b	n	i	n > b - 1?
Initial value	3	17		
After 1 iteration				
After 2 iterations				
After 3 iterations				

Compare: does the output match the rule for the (integer) logarithm function?

Base expansion algorithms

Two algorithms for constructing base b expansion from decimal representation

Most significant first: Start with left-most coefficient of expansion (highest value)

Informally: Build up to the value we need to represent in "greedy" approach, using units determined by base.

Calculating base b expansion, from left

```
procedure baseb1(n,b): positive integers with b > 1)
1
2
   v := n
   k := 1 + output of logb algorithm with inputs b and n
3
   for i := 1 to k
^{4}
      a_{k-i} := 0
5
      while v \ge b^{k-i}
6
        a_{k-i} := a_{k-i} + 1v := v - b^{k-i}
7
8
9
   return (a_{k-1},\ldots,a_0) {(a_{k-1}\ldots a_0)_b is the base b expansion of n}
```

Least significant first: Start with right-most coefficient of expansion (lowest value)

Idea: (when k > 1)

$$n = a_{k-1}b^{k-1} + \dots + a_1b + a_0$$

= $b(a_{k-1}b^{k-2} + \dots + a_1) + a_0$

so $a_0 = n \mod b$ and $a_{k-1}b^{k-2} + \cdots + a_1 = n \dim b$.

Calculating base b expansion, from right

1 procedure baseb2(n,b): positive integers with b > 1) 2 q := n3 k := 04 while $q \neq 0$ 5 $a_k := q \mod b$ 6 $q := q \operatorname{div} b$ 7 k := k + 18 return $(a_{k-1}, \dots, a_0)\{(a_{k-1} \dots a_0)_b \text{ is the base } b \text{ expansion of } n\}$

Base conversion algorithm

Practice: write an algorithm for converting from base b_1 expansion to base b_2 expansion: